什么是GCD

GCD是最大公约数的简称(当然理解为我们伟大的党也未尝不可)。在开头,我们先下几个定义:
①a|b表示a能整除b(a是b的约数)
②a mod b表示a-[a/b]b([a/b]在Pascal中相当于a div b)
③gcd(a,b)表示a和b的最大公约数
④a和b的线性组合表示ax+by(x,y为整数)。我们有:若d|a且d|b,则d|ax+by(这很重要!)

线性组合与GCD
现在我们证明一个重要的定理:gcd(a,b)是a和b的最小的正线性组合。
证明:
设gcd(a,b)为d,a和b的最小的正线性组合为s
∵d|a且d|b,
∴d|s。
而a mod s=a-[a/s]s
         =a-[a/s](ax+by)
         =a(1-[a/s]x)-b[a/s]y
亦为a和b的线性组合
∵a mod s<s,a mod s不能是a和b的最小的正线性组合
∴a mod s=0,即s|a
同理由s|b
∴s为a,b的公约数
∴s<=d
∵d|s
∴d=s。证毕。

由这条定理易推知:若d|a且d|b,则d|gcd(a,b)

扩展欧几里得是对于一对整数a,b总可以找到一组解x,y使ax+by=gcd(a,b)

例如a=6,b=15时,gcd(a,b)=3;一组可行的解是x=3,y=-1,当然还有其他解如x=-2,y=1.

给出实现程序

 int exGcd(int a,int b,int &d,int &x,int &y)//d表示gcd(a,b)
{
if(!b){d=a;x=;y=;}
else {exGcd(b,a%b,d,y,x);y-=x*(a/b);}
}

我们说过,gcd(a,b)可以表示为a和b的最小的正线性组合。现在我们就要求这个最小的正线性组合ax+by中的x和y。

从最简单的情况开始。当b=0时,我们取x=1,y=0。当b≠0时呢?
假设gcd(a,b)=d,则gcd(b,a
mod b)=d。若我们已经求出了gcd(b,a mod b)的线性组合表示bx'+(a mod b)y',则
gcd(a,b)=d
        =bx'+(a mod b)y'
        =bx'+(a-[a/b]b)y'

=ay'+b(x'-[a/b]y')=d=ax+by

那么,x=y',y=x'-[a/b]y'。这样就可以在Euclid的递归过程中求出x和y。

所以在上述代码的第4行中:

    x=y';(即x与y交换)

    (交换前)y=x'-(a/b)*y';

    (交换后)y=y'-(a/b)*x';

  所以递归时

    exGcd(b,a%b,d,y,x);交换了x,y
    y-=x*(a/b);//更新了y


求出了一组解肯定远远不够,如何求出其他解呢?一个公式就可以解决,对于方程的一个解(x0,y0)它的任意整数解可以表示为

  (x+ k*(b/d),y- k*(a/d))

推导过程为:
  设(x1,y1)为方程的一组已知解,(x2,y2)为一组未知解,代入方程后得:

  a*x1+b*y1=d;

  a*x2+b*y2=d;

  a*x1+b*y1=a*x2+b*y2

  移项得:

  a*(x1-x2)=b*(y1-y2)

  两边同时除以d(令a'=a/d,b'=b/d)

  a'*(x1-x2)=b'*(y1-y2)

  a' 与 b' 一定互质

  (x1-x2)一定可以被b整除

  设x1-x2=k*b'

  a'*k*b'=b'*(y1-y2)

  k*a'=y1-y2

  所以x2=x1-k*b'

    y2=y1+k*a'


同余方程:aΞb(mod n)表示(a mod n)==(b mod n)即a-b可以被n整除(注意是整除);

所以可以设ax-b为n的正整数倍,所以又可以设ax-b为n的y倍;

得到ax-b==ny变形得ax-ny==b;

这下就可以用扩展欧几里得解决了!

相关的例题在Vijos P1781 同余方程,2012年提高组的题,如果知道了这个方程,那AC简直妥妥的!下面是AC代码

 /*
ID: ringxu97
LANG: C++
TASK: NOIp2012-同余方程
SOLUTION: 扩展欧几里得 同余方程的解法
*/
#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<cstdlib>
#include<algorithm>
using namespace std;
int exgcd(int a,int b,int &d,int &x,int &y)
{
if(!b){d=a;x=;y=;}
else {exgcd(b,a%b,d,y,x);y-=x*(a/b);}
}
int main()
{
int a,b;
scanf("%d%d",&a,&b);
int g,x,y;
exgcd(a,b,g,x,y);
int ans=x;
while(ans<)ans+=b/g;
printf("%d\n",ans);
return ;
}

【数学】【NOIp2012】同余方程 题解 以及 关于扩展欧几里得与同余方程的更多相关文章

  1. poj 1061 扩展欧几里得解同余方程(求最小非负整数解)

    题目可以转化成求关于t的同余方程的最小非负数解: x+m*t≡y+n*t (mod L) 该方程又可以转化成: k*L+(n-m)*t=x-y 利用扩展欧几里得可以解决这个问题: eg:对于方程ax+ ...

  2. 扩展欧几里得求解同余方程(poj 1061)

    设方程 ax + by = c , 若 gcd(a,b) 是 c的因子(记作gcd(a,b)|c)则方程有解,反之无解. 其中x0,y0是方程的一组特解 , d = gcd(a,b), poj1061 ...

  3. 【扩展欧几里得】NOIP2012同余方程

    题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输出只有一行,包含一个正 ...

  4. [P1082][NOIP2012] 同余方程 (扩展欧几里得/乘法逆元)

    最近想学数论 刚好今天(初赛上午)智推了一个数论题 我屁颠屁颠地去学了乘法逆元 然后水掉了P3811 和 P2613 (zcy吊打集训队!)(逃 然后才开始做这题. 乘法逆元 乘法逆元的思路大致就是a ...

  5. 【Luogu】P1516青蛙的约会(线性同余方程,扩展欧几里得)

    题目链接 定理:对于方程\(ax+by=c\),等价于\(a*x=c(mod b)\),有整数解的充分必要条件是c是gcd(a,b)的整数倍. ——信息学奥赛之数学一本通 避免侵权.哈哈. 两只青蛙跳 ...

  6. interesting Integers(数学暴力||数论扩展欧几里得)

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAwwAAAHwCAIAAACE0n9nAAAgAElEQVR4nOydfUBT1f/Hbw9202m0r8

  7. POJ2115 - C Looooops(扩展欧几里得)

    题目大意 求同余方程Cx≡B-A(2^k)的最小正整数解 题解 可以转化为Cx-(2^k)y=B-A,然后用扩展欧几里得解出即可... 代码: #include <iostream> us ...

  8. EXGCD 扩展欧几里得

    推荐:https://www.zybuluo.com/samzhang/note/541890 扩展欧几里得,就是求出来ax+by=gcd(x,y)的x,y 为什么有解? 根据裴蜀定理,存在u,v使得 ...

  9. 浅谈扩展欧几里得[exgcd] By cellur925

    关于扩展欧几里得从寒假时就很迷,抄题解过了同余方程,但是原理并不理解. 今天终于把坑填上了qwq. 由于本人太菜,不会用markdown,所以这篇总结是手写的(什么).(字丑不要嫌弃嘛) ****** ...

随机推荐

  1. GUID是什么意思及Guid在sqlserver中的使用

    GUID(全球唯一标识)是微软使用的一个术语,由一个特定的算法,给某一个实体,如Word文档,创建一个唯一的标识,GUID值就是这个唯一的标识码.GUID广泛应用于微软的产品中,用于识别接口.复制品. ...

  2. SQLSERVER 触发器 将一个服务器上的数据库中数据插入到另一个服务器上的数据库中怎么做

    首先要执行 sp_addlinkedserver '服务器ip' 然后开始写语句 insert into ip.库名字.dbo.table select * from iserted

  3. Source not found for AeceManager$$FastClassByCGLIB$$15dcd49c.invoke(int, Object, Object[]) line: not available 问题解决

    一般出现这个问题,是manager的问题.控制台没有报错.是调试出来的.. 解决办法: 在调用此方法的manager里的方法上加上try  ...catch 重新启动调试, 就可在控台看到问题所在. ...

  4. if....else

    if....else语句是在特定的条件下成立执行的代码,在不成立的时候执行else后面的代码. 语法: if(条件) {条件成立执行}else{条件不成立执行} 下面来写一个简单的实例 以考试成绩为例 ...

  5. javascript——事件处理

    <script type="text/javascript"> function EventUtil() { var _self = this; ///添加事件 var ...

  6. 个人工作记录---工作中遇到的sql查询语句解析

    在工作中写了人生的第一个查询语句,虽然是在原有基础上改的,但仍然学到了不少知识 代码: select distinct m.id, (select z.jianc from model_zuzjg z ...

  7. 新一代的代码编辑神器Sublime Text 3(使用指南)

    首先附上官网下载链接:http://www.sublimetext.com/3 接下来是安装sublime最强大的插件功能:Package Control 一.简单的安装方法 使用Ctrl+`快捷键或 ...

  8. php之递归调用,递归创建目录

    /* 递归自身调用自身,每次调用把问题简化,直到问题解决 即:把大的任务拆成相同性质的多个小任务完成 */ /* function recsum($n){ if($n>1){ return $n ...

  9. php之购物车类思路及代码

    <?php /* 购物车类 1.整站范围内,购物车--全局有效 解决:把购物车的信息,放在session里 2.既然全局有效,购物车的实例只有一个 解决:单例模式 技术选型:session+单例 ...

  10. smarty中判断一个变量是否存在于一个数组中或是否存在于一个字符串中?

    smarty支持php的系统函数可以直接使用{if in_array($str, $arr) || strpos($str, $string)} yes {else} no{/if}