POJ 1845 Sumdiv(因子分解+快速幂+二分求和)
题意:给你A,B,让求A^B所有的因子和模上9901
思路:A可以拆成素因子的乘积: A = p1^x1 * p2^x2 *...* pn^xn
那么A^B = p1^(B*x1) * p2^(B*x2) *...* pn^(B*xn)
那么A^B所有的素因子和就是
(p1^0 + p1^1 + p1^2 + ... + p1^(B*x1) ) * (p2^0 + p2^1 + ... + p2^(B*x2) ) * ... * (pn^0 + pn^1 + ... + pn^(B*xn))
可以看出每一个括号内都是等比数列,但是不要用等比数列公式,因为有除法(刚开始我用除法,然后求了模的逆元,wa到爽死),因为不一定满足乘法逆元所需要的条件,除数与模数可能不互素(除数可能是模数的多少倍)。既然不能用公式,那么就要借助于二分了。比如如下式子求和:A1+A2+A3+A4 = A1+A2+A2(A1+A2)。通过这个式子发现,只要求出来A2就行了,然后只要计算一次A1+A2,就可以省掉一半的计算量。那么同理A1+A2也可以继续往下分。
现在推广到一般式。A1+A2+...+An
1) n为偶数: A1+A2+...+An = A1+A2+ ...+A(n/2)+ A(n/2)(A1+A2+...+A(n/2))
2) n为奇数: A1+A2+...+An = A1+A2+ ...+A(n/2)+ A(n/2)(A1+A2+...+A(n/2)) + An
推出来这些就可以递归求解了。
注:找素因子时,打个素数表,只需要打到sqrt(n)就行了,因为只可能在sqrt(n)里面,如果有比sqrt(n)大的两个素因子,乘积自然就大于n了,所以只需要sqrt(n)就可以了。因为就算有一个大素数和一个小素数相乘得来,那么在约掉小素数的时候,只剩大素数了,这会就直接跑到循坏外判断了。
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std; typedef long long ll;
const int maxn = ;
const ll mod = 9901LL;
ll A, B;
struct Factor {
ll fac;
ll cnt;
}factor[maxn];
int tot;
bool prime[maxn + ];
int pr[maxn];//素数表
int pr_cnt;
void init_prime()
{
memset(prime, true, sizeof(prime));
prime[] = prime[] = false;
for (int i = ; i * i <= maxn; i++)
if (prime[i])
for (int j = i + i; j < maxn; j += i)
prime[j] = false;
pr_cnt = ;
for (int i = ; i <= maxn; i++)
if (prime[i])
pr[pr_cnt++] = i;
}
void init()//找到所有的素因子
{
tot = ;
memset(factor, , sizeof(factor));
for (int i = ; i < pr_cnt && pr[i] <= A; i++)
{
if (A % pr[i] == )
{
factor[tot].fac = pr[i];
while (A % pr[i] == )
{
factor[tot].cnt++;
A /= pr[i];
}
factor[tot].cnt *= B;
tot++;
}
}
if (A > )
{
factor[tot].fac = A;
factor[tot++].cnt = B;
}
}
ll quickpow(ll a, ll b, ll mod)
{
ll ans = 1LL;
while (b)
{
if (b & ) ans = ans * a % mod;
a = a * a % mod;
b >>= ;
}
return ans % mod;
}
ll binary_pow(ll a, ll b, ll mod)//计算等比数列的和
{
if (b == ) return 1LL;
if (b == ) return a;
ll ans = ;
if (b & )
{
ans = quickpow(a, b, mod);
ans = (ans + (quickpow(a, b / , mod) + 1LL) % mod * binary_pow(a, b / , mod)) % mod;
}
else
ans = (quickpow(a, b / , mod) + 1LL) % mod * binary_pow(a, b / , mod) % mod;
return ans;
}
void solve()
{
if (B == )
{
puts("");
return;
}
if (A == )
{
puts("");
return;
}
init();
ll ans = 1LL;
for (int i = ; i < tot; i++)
{
ans = ans * (binary_pow(factor[i].fac, factor[i].cnt, mod) + 1LL) % mod;
}
cout << ans << endl;
}
int main()
{
init_prime();
while (cin >> A >> B)
{
solve();
}
return ;
}
POJ 1845 Sumdiv(因子分解+快速幂+二分求和)的更多相关文章
- POJ 3233 Matrix Power Series 矩阵快速幂+二分求和
矩阵快速幂,请参照模板 http://www.cnblogs.com/pach/p/5978475.html 直接sum=A+A2+A3...+Ak这样累加肯定会超时,但是 sum=A+A2+...+ ...
- poj 1845 POJ 1845 Sumdiv 数学模板
筛选法+求一个整数的分解+快速模幂运算+递归求计算1+p+p^2+````+p^nPOJ 1845 Sumdiv求A^B的所有约数之和%9901 */#include<stdio.h>#i ...
- POJ 1845 Sumdiv
快速幂+等比数列求和.... Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 12599 Accepted: 305 ...
- POJ 1845 Sumdiv [素数分解 快速幂取模 二分求和等比数列]
传送门:http://poj.org/problem?id=1845 大致题意: 求A^B的所有约数(即因子)之和,并对其取模 9901再输出. 解题基础: 1) 整数的唯一分解定理: 任意正整数都有 ...
- POJ 1845 Sumdiv (整数拆分+等比快速求和)
当我们拆分完数据以后, A^B的所有约数之和为: sum = [1+p1+p1^2+...+p1^(a1*B)] * [1+p2+p2^2+...+p2^(a2*B)] *...*[1+pn+pn^2 ...
- POJ 1845 Sumdiv 【二分 || 逆元】
任意门:http://poj.org/problem?id=1845. Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions ...
- POJ 3233 Matrix Power Series (矩阵快速幂+二分求解)
题意:求S=(A+A^2+A^3+...+A^k)%m的和 方法一:二分求解S=A+A^2+...+A^k若k为奇数:S=(A+A^2+...+A^(k/2))+A^(k/2)*(A+A^2+...+ ...
- POJ 3233 矩阵快速幂&二分
题意: 给你一个n*n的矩阵 让你求S: 思路: 只知道矩阵快速幂 然后nlogn递推是会TLE的. 所以呢 要把那个n换成log 那这个怎么搞呢 二分! 当k为偶数时: 当k为奇数时: 就按照这么搞 ...
- POJ 1845 Sumdiv 【逆元】
题意:求A^B的所有因子之和 很容易知道,先把分解得到,那么得到,那么 的所有因子和的表达式如下 第一种做法是分治求等比数列的和 用递归二分求等比数列1+pi+pi^2+pi^3+...+pi^n: ...
随机推荐
- DHTMLX 前端框架 建立你的一个应用程序教程(一)
介绍 从这里下载官网 示例 此教程包含是多方面的: 1.如何在页面上添加标准的dhtmlx组建 2.如何在页面上组织组件 3.如何添加过滤 4.如何从服务器端获取数据填充组建 5.如何保存用户修改的数 ...
- bower初接触
之前从Steve Sanderson的博文Architecting large Single Page Applications with Knockout.js中学习了用Yeoman创建Knocko ...
- vs2010 dll生成,使用问题[good]
VS2010 动态库开发——第一章 演练:创建和使用动态链接库 (C++) 转载自[http://www.cnblogs.com/sdlypyzq/archive/2012/01/17/2324215 ...
- VS2013 ASP.NET MVC 修改Web项目的IISExpress的端口固定
[首先]关闭防火墙,或防火墙开放端口 在解决方案中,右键某项目,属性——Web——服务器——选择IISExpress URL输入:http://localhost:8000/ 直接将8000更改 ...
- jBPM 4.4 数据库设计
1 存储流程定义相关的部署信息数据库 1.1 jbpm4_deployment 字段名 字段含义 类型 允许空值 键 DBID_ 流程模板标识 Bigint( ...
- Yii框架tips(转)
yii的一些小的技巧 http://www.yiichina.com/topic/151 db组件 'schemaCachingDuration'=>3600, 为什么不起做用?需要开缓存 如何 ...
- Idea实现WebService实例 转
作者:http://blog.csdn.net/dreamfly88/article/details/52350370 因为工作需要,数据传输部分需要使用webservice实现,经过两天的研究,实现 ...
- 把谷歌等webkit内核浏览器变为输入文本编辑器的方法
只需要在地址栏输入 data:text/html, <html contenteditable> 回车后即可看到效果
- TreeMap简单simple
TreeMap能够按照主键对里面的数据进行排序,基于上篇文章:java集合类之TreeMap中有关于TreeMap内部实现的详细介绍.本文主要是写了些使用TreeMap的简单demo. 要想实现Tre ...
- Java三大主流框架概述(转载)
转自:http://www.douban.com/note/320140839/ Struts.Hibernate和Spring是我们Java开发中的常用关键,他们分别针对不同的应用场景给出最合适的解 ...