Emuskald considers himself a master of flow algorithms. Now he has completed his most ingenious program yet — it calculates the maximum flow in an undirected graph. The graph consists of n vertices and m edges. Vertices are numbered from 1 to n. Vertices 1 and n being the source and the sink respectively.

However, his max-flow algorithm seems to have a little flaw — it only finds the flow volume for each edge, but not its direction. Help him find for each edge the direction of the flow through this edges. Note, that the resulting flow should be correct maximum flow.

More formally. You are given an undirected graph. For each it's undirected edge (ai, bi) you are given the flow volume ci. You should direct all edges in such way that the following conditions hold:

  1. for each vertex v (1 < v < n), sum of ci of incoming edges is equal to the sum of ci of outcoming edges;
  2. vertex with number 1 has no incoming edges;
  3. the obtained directed graph does not have cycles.
 

Input

The first line of input contains two space-separated integers n and m (2 ≤ n ≤ 2·105, n - 1 ≤ m ≤ 2·105), the number of vertices and edges in the graph. The following m lines contain three space-separated integers ai, bi and ci (1 ≤ ai, bi ≤ n, ai ≠ bi, 1 ≤ ci ≤ 104), which means that there is an undirected edge from ai to bi with flow volume ci.

It is guaranteed that there are no two edges connecting the same vertices; the given graph is connected; a solution always exists.

 

Output

Output m lines, each containing one integer di, which should be 0 if the direction of the i-th edge is ai → bi (the flow goes from vertex ai to vertex bi) and should be 1 otherwise. The edges are numbered from 1 to m in the order they are given in the input.

If there are several solutions you can print any of them.

 

Sample Input

Input
3 3
3 2 10
1 2 10
3 1 5
Output
1
0
1
Input
4 5
1 2 10
1 3 10
2 3 5
4 2 15
3 4 5
Output
0
0
1
1
0
  可以发现这里有拓扑性质,可以直接做,O(N)复杂度。
 #include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>
using namespace std;
const int N=,M=;
int cnt=,fir[N],nxt[M],to[M],cap[M];
int n,m,in[N],vis[N],ans[N];queue<int>q;
void addedge(int a,int b,int c){
nxt[++cnt]=fir[a];
to[fir[a]=cnt]=b;
cap[cnt]=c;
}
int main(){
scanf("%d%d",&n,&m);
for(int i=,a,b,c;i<=m;i++){
scanf("%d%d%d",&a,&b,&c);
addedge(a,b,c);addedge(b,a,c);
in[a]+=c;in[b]+=c;
}
for(int i=;i<n;i++)in[i]/=;
q.push();in[]=;vis[]=;
while(!q.empty()){
int x=q.front();q.pop();
for(int i=fir[x];i;i=nxt[i])
if(!vis[to[i]]){
in[to[i]]-=cap[i];
ans[i/]=i%;
if(in[to[i]]==){
q.push(to[i]);
vis[to[i]]=;
}
}
}
for(int i=;i<=m;i++)
printf("%d\n",ans[i]);
return ;
}

网络流相关(拓扑)CodeForces 269C:Flawed Flow的更多相关文章

  1. codeforces 269C Flawed Flow(网络流)

    Emuskald considers himself a master of flow algorithms. Now he has completed his most ingenious prog ...

  2. CodeForces - 269C Flawed Flow

    http://codeforces.com/problemset/problem/269/C 题目大意: 给定一个边没有定向的无法增广的残量网络且1是源点,n是汇点,给定每条边中的流.  让你把所有边 ...

  3. Codeforces 269C Flawed Flow (看题解)

    我好菜啊啊啊.. 循环以下操作 1.从队列中取出一个顶点, 把哪些没有用过的边全部用当前方向. 2.看有没有点的入度和 == 出度和, 如果有将当前的点加入队列. 现在有一个问题就是, 有没有可能队列 ...

  4. Codeforces 270E Flawed Flow 网络流问题

    题意:给出一些边,给出边的容量.让你为所有边确定一个方向使得流量最大. 题目不用求最大流, 而是求每条边的流向,这题是考察网络流的基本规律. 若某图有最大,则有与源点相连的边必然都是流出的,与汇点相连 ...

  5. [bzoj1565][NOI2009]植物大战僵尸_网络流_拓扑排序

    植物大战僵尸 bzoj1565 题目大意:给你一张网格图,上面种着一些植物.你从网格的最右侧开始进攻.每个植物可以对僵尸提供能量或者消耗僵尸的能量.每个植物可以保护一个特定网格内的植物,如果一个植物被 ...

  6. 网络流相关知识点以及题目//POJ1273 POJ 3436 POJ2112 POJ 1149

    首先来认识一下网络流中最大流的问题 给定一个有向图G=(V,E),把图中的边看做成管道,边权看做成每根管道能通过的最大流量(容量),给定源点s和汇点t,在源点有一个水源,在汇点有一个蓄水池,问s-t的 ...

  7. Oracle Spatial 中的弧段及弧相关拓扑错误

    1.报告说明 此报告用于验证下列问题: ORACLE SPATIAL 0.05m的最小拓扑容差值是否可以被修改 原始数据通过ARCGIS入库数据精度是否有损失 修改ORACLE SPATIAL图层的最 ...

  8. @codeforces - 708D@ Incorrect Flow

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一个有源点与汇点的图 G,并对于每一条边 (u, v) 给定 ...

  9. [模板] 网络流相关/最大流ISAP/费用流zkw

    最大流/ISAP 话说ISAP是真快...(大多数情况)吊打dinic,而且还好写... 大概思路就是: 在dinic的基础上, 动态修改层数, 如果终点层数 \(>\) 点数, break. ...

随机推荐

  1. jquery自调用匿名函数解析

    alert("undefined" in window);        (function (window, undefined) {            //构造jQuery ...

  2. ui-router的使用

    使用时需要ui中用ui-view指令指定 如: <div ui-view></div> 首先配置注册 ui-route var mainModule = angular.mod ...

  3. 移动web前端小结(一)

    这段时间做了几个移动项目的前端页面,姑且称之webapp.做这几个项目之前根本没接触过移动端的相关知识,以为和PC端页面没啥区别无非就是尺寸小一点罢了.上手以后发现问题颇多.下面从框架.相关知识点.遇 ...

  4. media queries 媒体查询使用

    media queries 翻译过来就是媒体查询,media 指的媒体类型.那么有哪些类型呢,常用的有 screen(屏幕).打印(print),个人理解就是它所在的不同终端. 常用的用法:1,< ...

  5. 自己做的demo--左连接

    下面四张表是数据库中已经有的数据: 第一步: 1.left join左连接,left outer join 左外连接,只是写法不同,相同的概念. 2.左连接查出来的结果是一定包含left关键字左边的表 ...

  6. 在C#中实现Socket端口复用

    转载:http://www.csharpwin.com/csharpspace/68.shtml 一.什么是端口复用:        因为在winsock的实现中,对于服务器的绑定是可以多重绑定的,在 ...

  7. 使用ASP在IIS创建WEB站点的函数

    程序代码: '=========================================================='函数介绍:创建WebSite'本函数使用ADSI,需要Adminis ...

  8. xp和win 2003远程桌面强制进入命令

    xp和win 2003远程桌面强制进入命令 注意:端口号也可以不写 如果是在win 2003里面进行踢人的话可以用命令: mstsc /console /v:172.25.100.27:3389 如果 ...

  9. IE9透明filter和opacity同时生效的解决办法 IE9 hack only

    转载请注明:来自于http://www.cnblogs.com/bluers/ 问题: 假设结构如下: <div class="wrapper"> <p clas ...

  10. 【PHP】 foreach循环中变量引用的一道面试题

    $a = array('a','b','c'); foreach($a as &$v){} foreach($a as $v){ } var_dump($a); 现在.不要打开浏览器,猜测一下 ...