Spark 中的join方式(pySpark)
spark基础知识请参考spark官网:http://spark.apache.org/docs/1.2.1/quick-start.html
无论是mapreduce还是spark ,分布式框架的性能优化方向大致分为:负载均衡、网络传输和磁盘I/O 这三块。而spark是基于内存的计算框架,因此在编写应用时需要充分利用其内存计算特征。本篇主要针对
spark应用中的join问题进行讨论,关于集群参数的优化会在另一篇文章中提及。
在传统的数据库平台和分布式计算平台,join的性能消耗都是很可观的,对spark来说如果join的表比较大,那么在shuffle时网络及磁盘压力会明显提升,严重时可能会造成excutor失败导致任务无法进行下去,
对这种join的优化方法主要是采用map和filter来改变join的实现方式,减少shuffle阶段的网络和磁盘I/O。下面以表的数据量大小分两部分来讨论。
大表:数据量较大的表
小表:数据量较小的表
一、大表与小表之间的join
这种join是大部分业务场景的主要join方式,将小表以broadcast的形式分发到每个executor后对大表进行filter操作,以下对每种join进行示例说明(兼容表中ID不唯一的情况)。
1、leftOuterJoin
>>>d1=sc.parallelize([(1,2),(2,3),(2,4),(3,4)])
>>>d2=sc.parallelize([(1,'a'),(2,'b'),(1,'d'),(5,'2')])
原生实现方式:
>>>d1.leftOuterJoin(d2).collect()
>>>[(1, (2, 'a')), (1, (2, 'd')), (2, (4, 'b')), (2, (3, 'b')), (3, (4, None))]
map实现方式(小表在右的实现方式,小表在左的情况会稍微复杂些,需要多一些操作操作,实际场景中不多见):
def doJoin(row):
result=[]
if row[1][1] is not None:
for i in row[1][1]:
result+=[(row[0],(row[1][0],i))]
else:
result+=[row]
return result d2_map={}
for i in d2.groupByKey().collect():
d2_map[i[0]]=i[1]
d2_broadcast=sc.broadcast(d2_map)
d2_dict=d2_broadcast.value
d1.map(lambda row:(row[0],(row[1],d2_dict.get(row[0])))).flatMap(doJoin).collect()
>>>[(1, (2, 'd')), (1, (2, 'a')), (2, (3, 'b')), (2, (4, 'b')), (3, (4, None))]
2、join
这里的join指的是innerjoin即只取出匹配到的数据项,只需要在上面的实现方式中加个filter即可
d1.map(lambda row:(row[0],(row[1],d2_dict.get(row[0])))).filter(lambda row:row[1][1] is not None).flatMap(doJoin).collect()
>>>[(1, (2, 'd')), (1, (2, 'a')), (2, (3, 'b')), (2, (4, 'b'))]
二、大表与大表之间的join(Reduce-join)
大表之间的join无法通过缓存数据来达到优化目的,因此需要把优化的重点放在分区效率及key的设计上
1、join的key值尽量使用数值类型,减少分区及shuffle的操作时间,在join时数值类型的key值在匹配时更快
2、将过滤条件放在join之前,使得join的数据量尽量最少
3、在join之前将两个表按相同分区数进行重新分区
reduce-join:指将两个表按key值进行分区,相同key的数据会被分在同一个分区,最后使用mapPartition进行join操作。
4、如果需要减少分区和并行度,请使用coalesce 而非repartition 方法。
* If you are decreasing the number of partitions in this RDD, consider using `coalesce`,
* which can avoid performing a shuffle.
三、其它优化方式
1、同一份数据被多次用到,在读入时进行缓存,后面直接使用,例如配置表,如果数据量不大则进行broadcast,否则使用cache
2、尽量减少重复计算,同样的计算逻辑只计算一次
3、几个优化参数
spark.akka.frameSize 1000 集群间通信 一帧数据的大小,设置太小可能会导致通信延迟
spark.akka.timeout 100 通信等待最长时间(秒为单位)
spark.akka.heartbeat.pauses 600 心跳失败最大间隔(秒为单位)
spark.serializer org.apache.spark.serializer.KryoSerializer 序列化方式(sprak自己的实现方式)
spark.sql.autoBroadcastJoinThreshold -1 禁止自动broadcast表
spark.shuffle.consolidateFiles true shuffle 自动合并小文件
四、后续优化方向
1、内存优化:对象所占用的内存,访问对象的消耗以及垃圾回收(garbage collection)所占用的开销
2、优化数据结构
3、优化RDD存储
4、并行度
Spark 中的join方式(pySpark)的更多相关文章
- Spark中的Join类型
常规连接: 左半连接: 左半连接结果集:仅仅保留左边表中的行,这些行的joinkey出现在右边表中!!!(类似于leftTable.joinKey in (rightTable.joinKeys)). ...
- 大数据学习day19-----spark02-------0 零碎知识点(分区,分区和分区器的区别) 1. RDD的使用(RDD的概念,特点,创建rdd的方式以及常见rdd的算子) 2.Spark中的一些重要概念
0. 零碎概念 (1) 这个有点疑惑,有可能是错误的. (2) 此处就算地址写错了也不会报错,因为此操作只是读取数据的操作(元数据),表示从此地址读取数据但并没有进行读取数据的操作 (3)分区(有时间 ...
- 【原创】大数据基础之Spark(8)Spark中Join实现原理
spark中join有两种,一种是RDD的join,一种是sql中的join,分别来看: 1 RDD join org.apache.spark.rdd.PairRDDFunctions /** * ...
- Oracle中的三种Join 方式
基本概念 Nested loop join: Outer table中的每一行与inner table中的相应记录join,类似一个嵌套的循环. Sort merge join: 将两个表排序,然后再 ...
- SQL Server中的三种Join方式
1.测试数据准备 参考:Sql Server中的表访问方式Table Scan, Index Scan, Index Seek 这篇博客中的实验数据准备.这两篇博客使用了相同的实验数据. 2.SQ ...
- Spark获取DataFrame中列的方式--col,$,column,apply
Spark获取DataFrame中列的方式--col,$,column,apply 1.官方说明 2.使用时涉及到的的包 3.Demo 原文作者:大葱拌豆腐 原文地址:Spark获取DataFrame ...
- Oracle SQL中join方式总结
在ORACLE数据库中,表与表之间的SQL JOIN方式有多种(不仅表与表,还可以表与视图.物化视图等联结).SQL JOIN其实是一个逻辑概念,像NEST LOOP JOIN. HASH JOIN等 ...
- Spark中常用工具类Utils的简明介绍
<深入理解Spark:核心思想与源码分析>一书前言的内容请看链接<深入理解SPARK:核心思想与源码分析>一书正式出版上市 <深入理解Spark:核心思想与源码分析> ...
- Spark中的编程模型
1. Spark中的基本概念 Application:基于Spark的用户程序,包含了一个driver program和集群中多个executor. Driver Program:运行Applicat ...
随机推荐
- Mybatis的学习总结二:使用Mybatis对表进行CRUD操作【参考】
一.使用Mybatis对表进行CRUD操作------基于XML的实现 1.定义SQL的映射文件 2.在conf.xml中进行注册. 2.创建测试类 [具体过程参考:Mybatis的学习总结一] 二. ...
- C#字符串颠倒输出
using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace Cons ...
- js闭包简要分析
相信大多数接触过js编程的程序员或多或少都对js中的闭包了解一些吧,所谓“闭包”,指的是一个拥有许多变量和绑定了这些变量的环境的表达式(通常是一个函数),因而这些变量也是该表达式的一部分.闭包是 EC ...
- PHP中的设计模式:单例模式(译)
原文链接:http://coderoncode.com/2014/01/27/design-patterns-php-singletons.html 单例模式用于限制类实例化到单个对象,当整个系统只需 ...
- 自动化运维工具之ansible
自动化运维工具之ansible 一,ansible简介 ansible是新出现的自动化运维工具,基于Python开发,集合了众多运维工具(puppet.cfengine.chef.func.fab ...
- hibernate中一对多 多对多 inverse cascade
----------------------------一对多------------------------------------------- inverse属性:是在维护关联关系的时候起作用的 ...
- OPENCV
opencv_ts300.libopencv_world300.lib IlmImfd.lib libjasperd.liblibjpegd.liblibpngd.lib libtiffd.lib l ...
- Centos6.5最小化安装:配置网络和自启动服务
参考http://www.111cn.net/sys/CentOS/56456.htm 1.开启网络连接,禁止IPV6启用 1.开启网络连接 vi /etc/sysconfig/network-sc ...
- C语言中float,double类型,在内存中的结构(存储方式)
C语言中float,double类型,在内存中的结构(存储方式)从存储结构和算法上来讲,double和float是一样的,不一样的地方仅仅是float是32位的,double是64位的,所以doubl ...
- eclipse + maven + jboss 遇到ClassNotFoundException
在使用eclipse + maven + jboss开发过程中,碰到ClassNotFoundException, 原因应该是deployed包中未包含maven的依赖jar. 可以通过如下方法把依赖 ...