Python如何进行cross validation training
以4-fold validation training为例
(1) 给定数据集data和标签集label
样本个数为
sampNum = len(data)
(2) 将给定的所有examples分为10组
每个fold个数为
foldNum = sampNum/10
(3) 将给定的所有examples分为10组
参考scikit-learn的3.1节:Cross-validation
import np
from sklearn import cross_validation
# dataset data = np.array([[1,3],[2,4],[3.1,3],[4,5],[5.0,0.3],[4.1,3.1]])
label = np.array([0,1,1,1,0,0])
sampNum= len(data) # 10-fold (9份为training,1份为validation)
kf = KFold(len(data), n_folds=4)
iFold = 0
for train_index, val_index in kf:
iFold = iFold+1
X_train, X_val, y_train, y_val = data[train_index], data[val_index], label[train_index], label[val_index] # 这里的X_train,y_train为第iFold个fold的训练集,X_val,y_val为validation set
给定的数据集如下:

所有样本的指标集为:
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
每个iFold(共4个)的训练集和validation set的index分别为:
iFold = 0 (训练集中包含6个examples,validation set 中包含3个examples)

iFold = 1

iFold = 2

iFold = 3

每个iFold的训练集和validation set分别为:
X_train, X_val, y_train, y_val = data[train_index], data[val_index], label[train_index], label[val_index]
Python如何进行cross validation training的更多相关文章
- Cross Validation done wrong
Cross Validation done wrong Cross validation is an essential tool in statistical learning 1 to estim ...
- 交叉验证(Cross Validation)原理小结
交叉验证是在机器学习建立模型和验证模型参数时常用的办法.交叉验证,顾名思义,就是重复的使用数据,把得到的样本数据进行切分,组合为不同的训练集和测试集,用训练集来训练模型,用测试集来评估模型预测的好坏. ...
- 交叉验证 Cross validation
来源:CSDN: boat_lee 简单交叉验证 hold-out cross validation 从全部训练数据S中随机选择s个样例作为训练集training set,剩余的作为测试集testin ...
- 交叉验证(cross validation)
转自:http://www.vanjor.org/blog/2010/10/cross-validation/ 交叉验证(Cross-Validation): 有时亦称循环估计, 是一种统计学上将数据 ...
- 10折交叉验证(10-fold Cross Validation)与留一法(Leave-One-Out)、分层采样(Stratification)
10折交叉验证 我们构建一个分类器,输入为运动员的身高.体重,输出为其从事的体育项目-体操.田径或篮球. 一旦构建了分类器,我们就可能有兴趣回答类似下述的问题: . 该分类器的精确率怎么样? . 该分 ...
- S折交叉验证(S-fold cross validation)
S折交叉验证(S-fold cross validation) 觉得有用的话,欢迎一起讨论相互学习~Follow Me 仅为个人观点,欢迎讨论 参考文献 https://blog.csdn.net/a ...
- 交叉验证(Cross Validation)简介
参考 交叉验证 交叉验证 (Cross Validation)刘建平 一.训练集 vs. 测试集 在模式识别(pattern recognition)与机器学习(machine lea ...
- 3.1.7. Cross validation of time series data
3.1.7. Cross validation of time series data Time series data is characterised by the correlation bet ...
- validation set以及cross validation的常见做法
如果给定的样本充足,进行模型选择的一种简单方法是随机地将数据集切分成三部分,分为训练集(training set).验证集(validation set)和测试集(testing set).训练集用来 ...
随机推荐
- 指纹增强程序Hong_enhancement
本算法是基于Lin Hong et al 的论文“Fingerprint ImageEnhancement: Algorithm and Performance Evaluation”编写而成.其中一 ...
- 用apache的httpclient发请求和接受数据
此处发请求的是用httpclient4,请自己下载所需要的jar包. 发post请求,并得到数据. String url = "http://localhost:8080/lee" ...
- [React] React Fundamentals: JSX Deep Dive
"JSX transforms from an XML-like syntax into native JavaScript. XML elements and attributes are ...
- jQuery--对话框插件--dialog
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- mybatis02 架构
SqlMapConfig.xml(mybatis全局配置文件加载mybatis环境(数据源,事物,mapper.xml(配置sql语句),),类似于hibernate的全局配置文件,用于加载hiber ...
- springMVC工作原理图
- at91sam9x5 linux 4.1.0下dts驱动编程模型
测试环境: CPU: AT91SAM9X35 Linux: Atmel提供的linux-at91-linux4sam_5.3 (Linux-4.1.0) 转载请注明: 凌云物网智科嵌入式实 ...
- Bash判断是否是root
#!/bin/bash ]; then echo "Not Root" exit fi
- Eclipse优化集合,Eclipse优化速度,解决Ctrl+C、Ctrl+V卡
Eclipse优化集合,Eclipse优化速度,解决Ctrl+C.Ctrl+V卡 >>>>>>>>>>>>>>> ...
- Linux安装QQ 2017
网上有很多wineQQ,是基于2012或者2013做的,然而当安装好后登录他会提示版本过来,我在优麒麟的应用商店里找到了一个基于国际版QQ的Wine版本,这里说下安装过程. 先上两张成果图: 下载地址 ...