Storm具体的解释(二)、成为第一Storm申请书
Storm执行模式:
- 本地模式(Local Mode): 即Topology(相当于一个任务,兴许会具体解说) 执行在本地机器的单一JVM上,这个模式主要用来开发、调试。
 - 远程模式(Remote Mode):在这个模式。我们把我们的Topology提交到集群,在这个模式中。Storm的全部组件都是线程安全的。由于它们都会执行在不同的Jvm或物理机器上,这个模式就是正式的生产模式。
 
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvc3VpZmVuZzMwNTE=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">
- 创建一个Spout读取数据
 - 创建bolt处理数据
 - 创建一个Topology提交到集群
 
package storm.demo.spout; import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.util.Map;
import backtype.storm.spout.SpoutOutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.IRichSpout;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Values;
public class WordReader implements IRichSpout {
private static final long serialVersionUID = 1L;
private SpoutOutputCollector collector;
private FileReader fileReader;
private boolean completed = false; public boolean isDistributed() {
return false;
}
/**
* 这是第一个方法。里面接收了三个參数。第一个是创建Topology时的配置,
* 第二个是全部的Topology数据,第三个是用来把Spout的数据发射给bolt
* **/
@Override
public void open(Map conf, TopologyContext context,
SpoutOutputCollector collector) {
try {
//获取创建Topology时指定的要读取的文件路径
this.fileReader = new FileReader(conf.get("wordsFile").toString());
} catch (FileNotFoundException e) {
throw new RuntimeException("Error reading file ["
+ conf.get("wordFile") + "]");
}
//初始化发射器
this.collector = collector; }
/**
* 这是Spout最基本的方法,在这里我们读取文本文件。并把它的每一行发射出去(给bolt)
* 这种方法会不断被调用。为了减少它对CPU的消耗,当任务完毕时让它sleep一下
* **/
@Override
public void nextTuple() {
if (completed) {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
// Do nothing
}
return;
}
String str;
// Open the reader
BufferedReader reader = new BufferedReader(fileReader);
try {
// Read all lines
while ((str = reader.readLine()) != null) {
/**
* 发射每一行,Values是一个ArrayList的实现
*/
this.collector.emit(new Values(str), str);
}
} catch (Exception e) {
throw new RuntimeException("Error reading tuple", e);
} finally {
completed = true;
} }
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("line")); }
@Override
public void close() {
// TODO Auto-generated method stub
} @Override
public void activate() {
// TODO Auto-generated method stub }
@Override
public void deactivate() {
// TODO Auto-generated method stub }
@Override
public void ack(Object msgId) {
System.out.println("OK:" + msgId);
}
@Override
public void fail(Object msgId) {
System.out.println("FAIL:" + msgId); }
@Override
public Map<String, Object> getComponentConfiguration() {
// TODO Auto-generated method stub
return null;
}
}
package storm.demo.bolt;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import backtype.storm.task.OutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.IRichBolt;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values;
public class WordNormalizer implements IRichBolt {
private OutputCollector collector;
@Override
public void prepare(Map stormConf, TopologyContext context,
OutputCollector collector) {
this.collector = collector;
}
/**这是bolt中最重要的方法,每当接收到一个tuple时。此方法便被调用
* 这种方法的作用就是把文本文件里的每一行切分成一个个单词,并把这些单词发射出去(给下一个bolt处理)
* **/
@Override
public void execute(Tuple input) {
String sentence = input.getString(0);
String[] words = sentence.split(" ");
for (String word : words) {
word = word.trim();
if (!word.isEmpty()) {
word = word.toLowerCase();
// Emit the word
List a = new ArrayList();
a.add(input);
collector.emit(a, new Values(word));
}
}
//确认成功处理一个tuple
collector.ack(input);
}
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word")); }
@Override
public void cleanup() {
// TODO Auto-generated method stub }
@Override
public Map<String, Object> getComponentConfiguration() {
// TODO Auto-generated method stub
return null;
}
}
package storm.demo.bolt;
import java.util.HashMap;
import java.util.Map;
import backtype.storm.task.OutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.IRichBolt;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.tuple.Tuple; public class WordCounter implements IRichBolt {
Integer id;
String name;
Map<String, Integer> counters;
private OutputCollector collector; @Override
public void prepare(Map stormConf, TopologyContext context,
OutputCollector collector) {
this.counters = new HashMap<String, Integer>();
this.collector = collector;
this.name = context.getThisComponentId();
this.id = context.getThisTaskId(); }
@Override
public void execute(Tuple input) {
String str = input.getString(0);
if (!counters.containsKey(str)) {
counters.put(str, 1);
} else {
Integer c = counters.get(str) + 1;
counters.put(str, c);
}
// 确认成功处理一个tuple
collector.ack(input);
}
/**
* Topology运行完成的清理工作,比方关闭连接、释放资源等操作都会写在这里
* 由于这仅仅是个Demo,我们用它来打印我们的计数器
* */
@Override
public void cleanup() {
System.out.println("-- Word Counter [" + name + "-" + id + "] --");
for (Map.Entry<String, Integer> entry : counters.entrySet()) {
System.out.println(entry.getKey() + ": " + entry.getValue());
}
counters.clear();
}
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
// TODO Auto-generated method stub }
@Override
public Map<String, Object> getComponentConfiguration() {
// TODO Auto-generated method stub
return null;
}
}
package storm.demo; import storm.demo.bolt.WordCounter;
import storm.demo.bolt.WordNormalizer;
import storm.demo.spout.WordReader;
import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.topology.TopologyBuilder;
import backtype.storm.tuple.Fields;
public class WordCountTopologyMain {
public static void main(String[] args) throws InterruptedException {
//定义一个Topology
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("word-reader",new WordReader());
builder.setBolt("word-normalizer", new WordNormalizer())
.shuffleGrouping("word-reader");
builder.setBolt("word-counter", new WordCounter(),2)
.fieldsGrouping("word-normalizer", new Fields("word"));
//配置
Config conf = new Config();
conf.put("wordsFile", "d:/text.txt");
conf.setDebug(false);
//提交Topology
conf.put(Config.TOPOLOGY_MAX_SPOUT_PENDING, 1);
//创建一个本地模式cluster
LocalCluster cluster = new LocalCluster();
cluster.submitTopology("Getting-Started-Toplogie", conf,
builder.createTopology());
Thread.sleep(1000);
cluster.shutdown();
}
}
版权声明:本文博主原创文章,博客,未经同意不得转载。
Storm具体的解释(二)、成为第一Storm申请书的更多相关文章
- Storm入门(十二)Twitter Storm: DRPC简介
		
作者: xumingming | 可以转载, 但必须以超链接形式标明文章原始出处和作者信息及版权声明网址: http://xumingming.sinaapp.com/756/twitter-stor ...
 - 大数据入门第十六天——流式计算之storm详解(二)常用命令与wc实例
		
一.常用命令 1.提交命令 提交任务命令格式:storm jar [jar路径] [拓扑包名.拓扑类名] [拓扑名称] torm jar examples/storm-starter/storm-st ...
 - Storm 学习之路(六)—— Storm项目三种打包方式对比分析
		
一.简介 在将Storm Topology提交到服务器集群运行时,需要先将项目进行打包.本文主要对比分析各种打包方式,并将打包过程中需要注意的事项进行说明.主要打包方式有以下三种: 第一种:不加任何插 ...
 - Storm入门教程 第三章Storm集群安装部署步骤、storm开发环境
		
一. Storm集群组件 Storm集群中包含两类节点:主控节点(Master Node)和工作节点(Work Node).其分别对应的角色如下: 主控节点(Master Node)上运行一个被称为N ...
 - Storm 学习之路(四)—— Storm集群环境搭建
		
一.集群规划 这里搭建一个3节点的Storm集群:三台主机上均部署Supervisor和LogViewer服务.同时为了保证高可用,除了在hadoop001上部署主Nimbus服务外,还在hadoop ...
 - Storm 学习之路(三)——  Storm单机版本环境搭建
		
1. 安装环境要求 you need to install Storm’s dependencies on Nimbus and the worker machines. These are: Jav ...
 - Android 布局学习之——Layout(布局)具体解释二(常见布局和布局參数)
		
[Android布局学习系列] 1.Android 布局学习之--Layout(布局)具体解释一 2.Android 布局学习之--Layout(布局)具体解释二(常见布局和布局參数) ...
 - {MySQL存储引擎介绍}一 存储引擎解释 二 MySQL存储引擎分类 三 不同存储引擎的使用
		
MySQL存储引擎介绍 MySQL之存储引擎 本节目录 一 存储引擎解释 二 MySQL存储引擎分类 三 不同存储引擎的使用 一 存储引擎解释 首先确定一点,存储引擎的概念是MySQL里面才有的,不是 ...
 - 我的QT5学习之路(二)——第一个程序
		
一.前言 “工欲善其事,必先利其器”,上一节,我介绍了Qt的安装和配置方法,搭建了基本的开发平台.这一节,来通过一个简单的例子来了解Qt的编程样式和规范,开始喽~~~ 二.第一个程序——Hello W ...
 - 【Storm】storm安装、配置、使用以及Storm单词计数程序的实例分析
		
前言:阅读笔记 storm和hadoop集群非常像.hadoop执行mr.storm执行topologies. mr和topologies最关键的不同点是:mr执行终于会结束,而topologies永 ...
 
随机推荐
- CodeForces 377B---Preparing for the Contest(二分+贪心)
			
C - Preparing for the Contest Time Limit:2000MS Memory Limit:262144KB 64bit IO Format:%I64d ...
 - 2014辽宁省赛 Repeat Number
			
问题 C: Repeat Number 时间限制: 1 Sec 内存限制: 128 MB [cid=1073&pid=2&langmask=0">提交][状态][论坛 ...
 - MySQL JDBC事务处理、封装JDBC工具类
			
MySQL数据库学习笔记(十)----JDBC事务处理.封装JDBC工具类 一.JDBC事务处理: 我们已经知道,事务的概念即:所有的操作要么同时成功,要么同时失败.在MySQL中提供了Commit. ...
 - android 在你的UI中显示Bitmap - 开发文档翻译
			
由于本人英文能力实在有限,不足之初敬请谅解 本博客只要没有注明“转”,那么均为原创,转贴请注明本博客链接链接 Displaying Bitmaps in Your UI 在你的UI中显示Bitmap ...
 - HDU4719-Oh My Holy FFF(DP线段树优化)
			
Oh My Holy FFF Time Limit: 5000/2500 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others) T ...
 - Matlab---串口操作---数据採集篇
			
matlab功能强大,串口操作也非常easy.相信看过下面两个实验你就能掌握咯! 開始吧! 实验1: 从电脑COM2口读取数据.并将数据保存在TXT文件里,方便数据分析,以下是M脚本: %名 称:Ma ...
 - [置顶] ANDROID 返回,菜单和HOME键的监听
			
------网上找了很多资料,项目中使用,最后将经验总结如下: 1,返回和菜单键是可以直接重写onKeyDown(int keyCode, KeyEvent event) 方法监听: @Overrid ...
 - POJ2155:Matrix(二维树状数组,经典)
			
Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the ...
 - C++ 中获取 可变形參函数中的參数
			
#include <iostream> #include <stdarg.h> using namespace std; int ArgFunc(const char * st ...
 - SAE微信公众号PHP SDK, token一直验证失败
			
用的是SAE,创建的是微信公众号PHP SDK框架,里面example文件夹下有server.php用来验证token的.但是问题来了,无论我怎么输入URL和token,一直告诉我token验证失败. ...