CNN for Visual Recognition (assignment1_Q1)
参考:http://cs231n.github.io/assignment1/
Q1: k-Nearest Neighbor classifier (30 points)
import numpy as np
from matplotlib.cbook import todate class KNearestNeighbor:
""" a kNN classifier with L2 distance """ def __init__(self):
pass def train(self, X, y):
"""
Train the classifier. For k-nearest neighbors this is just
memorizing the training data. Input:
X - A num_train x dimension array where each row is a training point.
y - A vector of length num_train, where y[i] is the label for X[i, :]
"""
self.X_train = X
self.y_train = y def predict(self, X, k=1, num_loops=0):
"""
Predict labels for test data using this classifier. Input:
X - A num_test x dimension array where each row is a test point.
k - The number of nearest neighbors that vote for predicted label
num_loops - Determines which method to use to compute distances
between training points and test points. Output:
y - A vector of length num_test, where y[i] is the predicted label for the
test point X[i, :].
"""
if num_loops == 0:
dists = self.compute_distances_no_loops(X)
elif num_loops == 1:
dists = self.compute_distances_one_loop(X)
elif num_loops == 2:
dists = self.compute_distances_two_loops(X)
else:
raise ValueError('Invalid value %d for num_loops' % num_loops) return self.predict_labels(dists, k=k) def compute_distances_two_loops(self, X):
"""
Compute the distance between each test point in X and each training point
in self.X_train using a nested loop over both the training data and the
test data. Input:
X - An num_test x dimension array where each row is a test point. Output:
dists - A num_test x num_train array where dists[i, j] is the distance
between the ith test point and the jth training point.
"""
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
for i in xrange(num_test):
for j in xrange(num_train):
#####################################################################
# TODO: #
# Compute the l2 distance between the ith test point and the jth #
# training point, and store the result in dists[i, j] #
#####################################################################
dists[i,j] = np.sqrt(np.sum(np.square(X[i,:] - self.X_train[j,:])))
#####################################################################
# END OF YOUR CODE #
#####################################################################
return dists def compute_distances_one_loop(self, X):
"""
Compute the distance between each test point in X and each training point
in self.X_train using a single loop over the test data. Input / Output: Same as compute_distances_two_loops
"""
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
for i in xrange(num_test):
#######################################################################
# TODO: #
# Compute the l2 distance between the ith test point and all training #
# points, and store the result in dists[i, :]. #
#######################################################################
dists[i, :] = np.sqrt(np.sum(np.square(self.X_train - X[i,:]), axis=1))
#######################################################################
# END OF YOUR CODE #
#######################################################################
return dists def compute_distances_no_loops(self, X):
"""
Compute the distance between each test point in X and each training point
in self.X_train using no explicit loops. Input / Output: Same as compute_distances_two_loops
"""
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
#########################################################################
# TODO: #
# Compute the l2 distance between all test points and all training #
# points without using any explicit loops, and store the result in #
# dists. #
# HINT: Try to formulate the l2 distance using matrix multiplication #
# and two broadcast sums. #
#########################################################################
tDot = np.multiply(np.dot(X, self.X_train.T), -2)
t1 = np.sum(np.square(X), axis=1, keepdims=True)
t2 = np.sum(np.square(self.X_train), axis=1)
tDot = np.add(t1, tDot)
tDot = np.add(tDot, t2)
dists = np.sqrt(tDot)
#########################################################################
# END OF YOUR CODE #
#########################################################################
return dists def predict_labels(self, dists, k=1):
"""
Given a matrix of distances between test points and training points,
predict a label for each test point. Input:
dists - A num_test x num_train array where dists[i, j] gives the distance
between the ith test point and the jth training point. Output:
y - A vector of length num_test where y[i] is the predicted label for the
ith test point.
"""
num_test = dists.shape[0]
y_pred = np.zeros(num_test)
for i in xrange(num_test):
# A list of length k storing the labels of the k nearest neighbors to
# the ith test point.
closest_y = []
#########################################################################
# TODO: #
# Use the distance matrix to find the k nearest neighbors of the ith #
# training point, and use self.y_train to find the labels of these #
# neighbors. Store these labels in closest_y. #
# Hint: Look up the function numpy.argsort. #
#########################################################################
# pass
closest_y = self.y_train[np.argsort(dists[i, :])[:k]]
#########################################################################
# TODO: #
# Now that you have found the labels of the k nearest neighbors, you #
# need to find the most common label in the list closest_y of labels. #
# Store this label in y_pred[i]. Break ties by choosing the smaller #
# label. #
######################################################################### y_pred[i] = np.argmax(np.bincount(closest_y))
#########################################################################
# END OF YOUR CODE #
######################################################################### return y_pred
输出:
Two loop version took 55.817642 seconds
One loop version took 49.692089 seconds
No loop version took 1.267753 seconds
CNN for Visual Recognition (assignment1_Q1)的更多相关文章
- CNN for Visual Recognition (01)
CS231n: Convolutional Neural Networks for Visual Recognitionhttp://vision.stanford.edu/teaching/cs23 ...
- CNN for Visual Recognition (02)
图像分类 参考:http://cs231n.github.io/classification/ 图像分类(Image Classification),是给输入图像赋予一个已知类别标签.图像分类是计算机 ...
- 论文笔记之: Bilinear CNN Models for Fine-grained Visual Recognition
Bilinear CNN Models for Fine-grained Visual Recognition CVPR 2015 本文提出了一种双线性模型( bilinear models),一种识 ...
- 大规模视觉识别挑战赛ILSVRC2015各团队结果和方法 Large Scale Visual Recognition Challenge 2015
Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in thi ...
- 【论文阅读】Deep Mixture of Diverse Experts for Large-Scale Visual Recognition
导读: 本文为论文<Deep Mixture of Diverse Experts for Large-Scale Visual Recognition>的阅读总结.目的是做大规模图像分类 ...
- 目标检测--Spatial pyramid pooling in deep convolutional networks for visual recognition(PAMI, 2015)
Spatial pyramid pooling in deep convolutional networks for visual recognition 作者: Kaiming He, Xiangy ...
- Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition Kaiming He, Xiangyu Zh ...
- Convolutional Neural Networks for Visual Recognition 1
Introduction 这是斯坦福计算机视觉大牛李菲菲最新开设的一门关于deep learning在计算机视觉领域的相关应用的课程.这个课程重点介绍了deep learning里的一种比较流行的模型 ...
- 【CV论文阅读】+【搬运工】LocNet: Improving Localization Accuracy for Object Detection + A Theoretical analysis of feature pooling in Visual Recognition
论文的关注点在于如何提高bounding box的定位,使用的是概率的预测形式,模型的基础是region proposal.论文提出一个locNet的深度网络,不在依赖于回归方程.论文中提到locne ...
随机推荐
- csu 1503: 点弧之间的距离-湖南省第十届大学生计算机程序设计大赛
这是--比量p并用交点连接中心不上弧.在于:它至p距离.是不是p与端点之间的最短距离 #include<iostream> #include<map> #include< ...
- .net EF 事物 订单流水号的生成 (一)
首先需要 添加 System.Transactions 程序集 数据表: create table SalesOrder ( ID ,) primary key not null, OrderNo ) ...
- C#中实现WebBrowser控件的HTML源代码读写
原文:C#中实现WebBrowser控件的HTML源代码读写 C#中实现WebBrowser控件的HTML源代码读写http://www.blogcn.com/user8/flier_lu/index ...
- 动画云创始人胥克谦&课程格子创始人李天放分享创业经历
原文地址:http://student.csdn.net/mcd/topic/163587/955044 2014年10月18日在北京科技大学成功举办了CSDN高校俱乐部全国巡讲,现场參会学生有一百余 ...
- poj 3273 Monthly Expense (二分)
//最大值最小 //天数的a[i]值是固定的 不能改变顺序 # include <algorithm> # include <string.h> # include <s ...
- hdu149850 years, 50 colors (多个最小顶点覆盖)
50 years, 50 colors Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- 第1章1节《MonkeyRunner源码剖析》概述:前言(原创)
天地会珠海分舵注:本来这一系列是准备出一本书的,详情请见早前博文“寻求合作伙伴编写<深入理解 MonkeyRunner>书籍“.但因为诸多原因,没有如愿.所以这里把草稿分享出来,所以错误在 ...
- How to:如何在调用外部文件时调试文件路径(常见于使用LaunchAppAndWait和LaunchApp函数)
原文:How to:如何在调用外部文件时调试文件路径(常见于使用LaunchAppAndWait和LaunchApp函数) IS里调用外部文件的时候,一般都是用LaunchAppAndWait函数,比 ...
- C# Winform 界面线程的Invoke死锁,以及Application.DoEvent的问题
1.对于非界面线程来说,Invoke是把一个操作丢到界面线程的队列里,然后阻塞,等到这个操作被界面线程完成后,才继续后续操作.也就是说,Invoke是同步的. 问题来了,如果界面线程此时正在等待这个非 ...
- apache启动报错:the requested operation has failed解决办法
原因一:80端口占用 例如IIS,另外就是迅雷.我的apache服务器就是被迅雷害得无法启用! 原因二:软件冲突 装了某些软件会使apache无法启动如Dr.com 你打开网络连接->TcpIp ...