CNN for Visual Recognition (assignment1_Q1)
参考:http://cs231n.github.io/assignment1/
Q1: k-Nearest Neighbor classifier (30 points)
import numpy as np
from matplotlib.cbook import todate class KNearestNeighbor:
""" a kNN classifier with L2 distance """ def __init__(self):
pass def train(self, X, y):
"""
Train the classifier. For k-nearest neighbors this is just
memorizing the training data. Input:
X - A num_train x dimension array where each row is a training point.
y - A vector of length num_train, where y[i] is the label for X[i, :]
"""
self.X_train = X
self.y_train = y def predict(self, X, k=1, num_loops=0):
"""
Predict labels for test data using this classifier. Input:
X - A num_test x dimension array where each row is a test point.
k - The number of nearest neighbors that vote for predicted label
num_loops - Determines which method to use to compute distances
between training points and test points. Output:
y - A vector of length num_test, where y[i] is the predicted label for the
test point X[i, :].
"""
if num_loops == 0:
dists = self.compute_distances_no_loops(X)
elif num_loops == 1:
dists = self.compute_distances_one_loop(X)
elif num_loops == 2:
dists = self.compute_distances_two_loops(X)
else:
raise ValueError('Invalid value %d for num_loops' % num_loops) return self.predict_labels(dists, k=k) def compute_distances_two_loops(self, X):
"""
Compute the distance between each test point in X and each training point
in self.X_train using a nested loop over both the training data and the
test data. Input:
X - An num_test x dimension array where each row is a test point. Output:
dists - A num_test x num_train array where dists[i, j] is the distance
between the ith test point and the jth training point.
"""
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
for i in xrange(num_test):
for j in xrange(num_train):
#####################################################################
# TODO: #
# Compute the l2 distance between the ith test point and the jth #
# training point, and store the result in dists[i, j] #
#####################################################################
dists[i,j] = np.sqrt(np.sum(np.square(X[i,:] - self.X_train[j,:])))
#####################################################################
# END OF YOUR CODE #
#####################################################################
return dists def compute_distances_one_loop(self, X):
"""
Compute the distance between each test point in X and each training point
in self.X_train using a single loop over the test data. Input / Output: Same as compute_distances_two_loops
"""
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
for i in xrange(num_test):
#######################################################################
# TODO: #
# Compute the l2 distance between the ith test point and all training #
# points, and store the result in dists[i, :]. #
#######################################################################
dists[i, :] = np.sqrt(np.sum(np.square(self.X_train - X[i,:]), axis=1))
#######################################################################
# END OF YOUR CODE #
#######################################################################
return dists def compute_distances_no_loops(self, X):
"""
Compute the distance between each test point in X and each training point
in self.X_train using no explicit loops. Input / Output: Same as compute_distances_two_loops
"""
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
#########################################################################
# TODO: #
# Compute the l2 distance between all test points and all training #
# points without using any explicit loops, and store the result in #
# dists. #
# HINT: Try to formulate the l2 distance using matrix multiplication #
# and two broadcast sums. #
#########################################################################
tDot = np.multiply(np.dot(X, self.X_train.T), -2)
t1 = np.sum(np.square(X), axis=1, keepdims=True)
t2 = np.sum(np.square(self.X_train), axis=1)
tDot = np.add(t1, tDot)
tDot = np.add(tDot, t2)
dists = np.sqrt(tDot)
#########################################################################
# END OF YOUR CODE #
#########################################################################
return dists def predict_labels(self, dists, k=1):
"""
Given a matrix of distances between test points and training points,
predict a label for each test point. Input:
dists - A num_test x num_train array where dists[i, j] gives the distance
between the ith test point and the jth training point. Output:
y - A vector of length num_test where y[i] is the predicted label for the
ith test point.
"""
num_test = dists.shape[0]
y_pred = np.zeros(num_test)
for i in xrange(num_test):
# A list of length k storing the labels of the k nearest neighbors to
# the ith test point.
closest_y = []
#########################################################################
# TODO: #
# Use the distance matrix to find the k nearest neighbors of the ith #
# training point, and use self.y_train to find the labels of these #
# neighbors. Store these labels in closest_y. #
# Hint: Look up the function numpy.argsort. #
#########################################################################
# pass
closest_y = self.y_train[np.argsort(dists[i, :])[:k]]
#########################################################################
# TODO: #
# Now that you have found the labels of the k nearest neighbors, you #
# need to find the most common label in the list closest_y of labels. #
# Store this label in y_pred[i]. Break ties by choosing the smaller #
# label. #
######################################################################### y_pred[i] = np.argmax(np.bincount(closest_y))
#########################################################################
# END OF YOUR CODE #
######################################################################### return y_pred
输出:
Two loop version took 55.817642 seconds
One loop version took 49.692089 seconds
No loop version took 1.267753 seconds
CNN for Visual Recognition (assignment1_Q1)的更多相关文章
- CNN for Visual Recognition (01)
CS231n: Convolutional Neural Networks for Visual Recognitionhttp://vision.stanford.edu/teaching/cs23 ...
- CNN for Visual Recognition (02)
图像分类 参考:http://cs231n.github.io/classification/ 图像分类(Image Classification),是给输入图像赋予一个已知类别标签.图像分类是计算机 ...
- 论文笔记之: Bilinear CNN Models for Fine-grained Visual Recognition
Bilinear CNN Models for Fine-grained Visual Recognition CVPR 2015 本文提出了一种双线性模型( bilinear models),一种识 ...
- 大规模视觉识别挑战赛ILSVRC2015各团队结果和方法 Large Scale Visual Recognition Challenge 2015
Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in thi ...
- 【论文阅读】Deep Mixture of Diverse Experts for Large-Scale Visual Recognition
导读: 本文为论文<Deep Mixture of Diverse Experts for Large-Scale Visual Recognition>的阅读总结.目的是做大规模图像分类 ...
- 目标检测--Spatial pyramid pooling in deep convolutional networks for visual recognition(PAMI, 2015)
Spatial pyramid pooling in deep convolutional networks for visual recognition 作者: Kaiming He, Xiangy ...
- Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition Kaiming He, Xiangyu Zh ...
- Convolutional Neural Networks for Visual Recognition 1
Introduction 这是斯坦福计算机视觉大牛李菲菲最新开设的一门关于deep learning在计算机视觉领域的相关应用的课程.这个课程重点介绍了deep learning里的一种比较流行的模型 ...
- 【CV论文阅读】+【搬运工】LocNet: Improving Localization Accuracy for Object Detection + A Theoretical analysis of feature pooling in Visual Recognition
论文的关注点在于如何提高bounding box的定位,使用的是概率的预测形式,模型的基础是region proposal.论文提出一个locNet的深度网络,不在依赖于回归方程.论文中提到locne ...
随机推荐
- Jenkins + robot framework自动发送邮件报告
一.Jenkins安装插件 进入系统管理—插件管理—可选插件下安装以下插件Email-ext plugin.Email-ext Template Plugin. 安装完如下: 二.系统设置 1.设置系 ...
- javascript系列之核心知识点(一)
JavaScript. The core. 1.对象 2.原型链 3.构造函数 4.执行上下文堆栈 5.执行上下文 6.变量对象 7.活动对象 8.作用域链 9.闭包 10.this值 11.总结 这 ...
- Linux通过编辑器vi使用介绍
vi编辑器是所有Unix和Linux在标准的编辑系统. 对Unix和Linux该系统无论是什么版本号,vi编辑器是完全一样. 基本上vi它可分为三种状态,每一个是命令模式(commandmode).插 ...
- IIS7伪静态化URL Rewrite模块
原文 IIS7伪静态化URL Rewrite模块 在Win7安装了IIS7.5之后,搭建一些网站或者博客,但是IIS7.5本身没有URL Rewrite功能,也就是无法实现网址的伪静态化. 从网上找了 ...
- 图数据库 Titan 高速入门
尤其在互联网世界,图计算越来越受到人们的关注,而图计算相关的软件也越来越丰富.本文将高速展示 Titan这个open source 的图数据库. 注:本文的操作主要基于Titan 官方的两篇文档: - ...
- 枚举 UIButton补充
一.URL 1.什么是URL? URL是某个资源的唯一路径,通过这个路径就能访问对应的资源 2.URL的组成 协议头://全路径 * 协议头就代表资源的类型,比如http代表网络服务器资源,ftp代表 ...
- 分区表在安装系统(MBR)丢失或损坏
操作系统能识别出硬盘中的各个不同的分区,是靠硬盘分区表(MBR)来识别的. 硬盘分区表中记录了各个分区的位置和大小以及类型等信息,假设这个分区表破坏了,那么这块硬盘里面的分区就会丢失.系统是无法在浏览 ...
- SQL点滴17—使用数据库引擎存储过程,系统视图查询,DBA,BI开发人员必备基础知识
原文:SQL点滴17-使用数据库引擎存储过程,系统视图查询,DBA,BI开发人员必备基础知识 在开发过程中会遇到需要弄清楚这个数据库什么时候建的,这个数据库中有多少表,这个存储过程长的什么样子等等信息 ...
- Redis3
Redis到底该如何利用 上两篇受益匪浅,秉着趁热打铁,不挖到最深不罢休的精神,我决定追加这篇.上一篇里最后我有提到实现分级缓存管理应该是个可行的方案,因此今天特别实践了一下.不过缓存分级之后也发现了 ...
- leetcode第七题--Reverse Integer
Problem: Reverse digits of an integer. Example1: x = 123, return 321Example2: x = -123, return -321 ...