CNN for Visual Recognition (assignment1_Q1)
参考:http://cs231n.github.io/assignment1/
Q1: k-Nearest Neighbor classifier (30 points)
import numpy as np
from matplotlib.cbook import todate class KNearestNeighbor:
""" a kNN classifier with L2 distance """ def __init__(self):
pass def train(self, X, y):
"""
Train the classifier. For k-nearest neighbors this is just
memorizing the training data. Input:
X - A num_train x dimension array where each row is a training point.
y - A vector of length num_train, where y[i] is the label for X[i, :]
"""
self.X_train = X
self.y_train = y def predict(self, X, k=1, num_loops=0):
"""
Predict labels for test data using this classifier. Input:
X - A num_test x dimension array where each row is a test point.
k - The number of nearest neighbors that vote for predicted label
num_loops - Determines which method to use to compute distances
between training points and test points. Output:
y - A vector of length num_test, where y[i] is the predicted label for the
test point X[i, :].
"""
if num_loops == 0:
dists = self.compute_distances_no_loops(X)
elif num_loops == 1:
dists = self.compute_distances_one_loop(X)
elif num_loops == 2:
dists = self.compute_distances_two_loops(X)
else:
raise ValueError('Invalid value %d for num_loops' % num_loops) return self.predict_labels(dists, k=k) def compute_distances_two_loops(self, X):
"""
Compute the distance between each test point in X and each training point
in self.X_train using a nested loop over both the training data and the
test data. Input:
X - An num_test x dimension array where each row is a test point. Output:
dists - A num_test x num_train array where dists[i, j] is the distance
between the ith test point and the jth training point.
"""
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
for i in xrange(num_test):
for j in xrange(num_train):
#####################################################################
# TODO: #
# Compute the l2 distance between the ith test point and the jth #
# training point, and store the result in dists[i, j] #
#####################################################################
dists[i,j] = np.sqrt(np.sum(np.square(X[i,:] - self.X_train[j,:])))
#####################################################################
# END OF YOUR CODE #
#####################################################################
return dists def compute_distances_one_loop(self, X):
"""
Compute the distance between each test point in X and each training point
in self.X_train using a single loop over the test data. Input / Output: Same as compute_distances_two_loops
"""
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
for i in xrange(num_test):
#######################################################################
# TODO: #
# Compute the l2 distance between the ith test point and all training #
# points, and store the result in dists[i, :]. #
#######################################################################
dists[i, :] = np.sqrt(np.sum(np.square(self.X_train - X[i,:]), axis=1))
#######################################################################
# END OF YOUR CODE #
#######################################################################
return dists def compute_distances_no_loops(self, X):
"""
Compute the distance between each test point in X and each training point
in self.X_train using no explicit loops. Input / Output: Same as compute_distances_two_loops
"""
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
#########################################################################
# TODO: #
# Compute the l2 distance between all test points and all training #
# points without using any explicit loops, and store the result in #
# dists. #
# HINT: Try to formulate the l2 distance using matrix multiplication #
# and two broadcast sums. #
#########################################################################
tDot = np.multiply(np.dot(X, self.X_train.T), -2)
t1 = np.sum(np.square(X), axis=1, keepdims=True)
t2 = np.sum(np.square(self.X_train), axis=1)
tDot = np.add(t1, tDot)
tDot = np.add(tDot, t2)
dists = np.sqrt(tDot)
#########################################################################
# END OF YOUR CODE #
#########################################################################
return dists def predict_labels(self, dists, k=1):
"""
Given a matrix of distances between test points and training points,
predict a label for each test point. Input:
dists - A num_test x num_train array where dists[i, j] gives the distance
between the ith test point and the jth training point. Output:
y - A vector of length num_test where y[i] is the predicted label for the
ith test point.
"""
num_test = dists.shape[0]
y_pred = np.zeros(num_test)
for i in xrange(num_test):
# A list of length k storing the labels of the k nearest neighbors to
# the ith test point.
closest_y = []
#########################################################################
# TODO: #
# Use the distance matrix to find the k nearest neighbors of the ith #
# training point, and use self.y_train to find the labels of these #
# neighbors. Store these labels in closest_y. #
# Hint: Look up the function numpy.argsort. #
#########################################################################
# pass
closest_y = self.y_train[np.argsort(dists[i, :])[:k]]
#########################################################################
# TODO: #
# Now that you have found the labels of the k nearest neighbors, you #
# need to find the most common label in the list closest_y of labels. #
# Store this label in y_pred[i]. Break ties by choosing the smaller #
# label. #
######################################################################### y_pred[i] = np.argmax(np.bincount(closest_y))
#########################################################################
# END OF YOUR CODE #
######################################################################### return y_pred
输出:
Two loop version took 55.817642 seconds
One loop version took 49.692089 seconds
No loop version took 1.267753 seconds
CNN for Visual Recognition (assignment1_Q1)的更多相关文章
- CNN for Visual Recognition (01)
CS231n: Convolutional Neural Networks for Visual Recognitionhttp://vision.stanford.edu/teaching/cs23 ...
- CNN for Visual Recognition (02)
图像分类 参考:http://cs231n.github.io/classification/ 图像分类(Image Classification),是给输入图像赋予一个已知类别标签.图像分类是计算机 ...
- 论文笔记之: Bilinear CNN Models for Fine-grained Visual Recognition
Bilinear CNN Models for Fine-grained Visual Recognition CVPR 2015 本文提出了一种双线性模型( bilinear models),一种识 ...
- 大规模视觉识别挑战赛ILSVRC2015各团队结果和方法 Large Scale Visual Recognition Challenge 2015
Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in thi ...
- 【论文阅读】Deep Mixture of Diverse Experts for Large-Scale Visual Recognition
导读: 本文为论文<Deep Mixture of Diverse Experts for Large-Scale Visual Recognition>的阅读总结.目的是做大规模图像分类 ...
- 目标检测--Spatial pyramid pooling in deep convolutional networks for visual recognition(PAMI, 2015)
Spatial pyramid pooling in deep convolutional networks for visual recognition 作者: Kaiming He, Xiangy ...
- Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition Kaiming He, Xiangyu Zh ...
- Convolutional Neural Networks for Visual Recognition 1
Introduction 这是斯坦福计算机视觉大牛李菲菲最新开设的一门关于deep learning在计算机视觉领域的相关应用的课程.这个课程重点介绍了deep learning里的一种比较流行的模型 ...
- 【CV论文阅读】+【搬运工】LocNet: Improving Localization Accuracy for Object Detection + A Theoretical analysis of feature pooling in Visual Recognition
论文的关注点在于如何提高bounding box的定位,使用的是概率的预测形式,模型的基础是region proposal.论文提出一个locNet的深度网络,不在依赖于回归方程.论文中提到locne ...
随机推荐
- 从头开始学JavaScript(一)——基础中的基础
概要:javascript的组成. 各个组成部分的作用 . 一.javascript的组成 javascript ECMAScript(核心) DOM(文档对象模型) BOM(浏览器对象模型) ...
- JqueryAjax异步加载在ASP.NET
前台代码 <script src="Scripts/jquery-1.4.1.min.js" type="text/javascript">< ...
- android详细信息java.util.ConcurrentModificationException变态
在今天做android当项目,我遇到了这个异常,好吧.其实最不寻常遇到异常IllegalstateException.它们与我们的硬件连接SDK抛出,我想折磨学生阿玉啊.扯远了. 今天,我想回到这个异 ...
- hdu 4893 Wow! Such Sequence!
http://acm.hdu.edu.cn/showproblem.php?pid=4893 三种操作: 1 k d - "add" 2 l r - "query sum ...
- PHP经验——获得PHP版本信息及版本比较
原文:PHP经验--获得PHP版本信息及版本比较 偶然看到别人写的一句代码: <?php if (version_compare("5.2", PHP_VERSION, &q ...
- openstack shelve/unshelve/stop浅析
声明: 本博客欢迎转发,但请保留原作者信息! 博客地址:http://blog.csdn.net/halcyonbaby 内容系本人学习.研究和总结,如有雷同,实属荣幸! stop的虚拟机仅仅是将虚拟 ...
- 复习一下SpringMVC的工作原理
上面的是springMVC的工作原理图: 1.客户端发出一个http请求给web服务器,web服务器对http请求进行解析,如果匹配DispatcherServlet的请求映射路径(在web.xml中 ...
- Android接口测试-JUnit入门
1.下载:http://www.junit.org 2.配置AndroidManifest.xml,在application节点加入 <!--使用单元测试库--> <u ...
- linuxsocket通信recv研究缓存机制
曾有过这样一个小疑问.当一个进程注册的插座后,,假设插座没有被调用recv函数接受包.能接受到数据包吗? 或者这样说,假设我的程序注冊了一个套接字去接受数据包,可是每收到一个数据包都须要非常长 ...
- 一个用MFC实现Com聚合样本
ComATLATLMFCMFC MFCIUnknownMFCCCmdTargetComMFCCom MFCCOM 1. 1.1 #pragma once typedef long HRESULT; / ...