参考:http://cs231n.github.io/assignment1/

Q1: k-Nearest Neighbor classifier (30 points)

 import numpy as np
from matplotlib.cbook import todate class KNearestNeighbor:
""" a kNN classifier with L2 distance """ def __init__(self):
pass def train(self, X, y):
"""
Train the classifier. For k-nearest neighbors this is just
memorizing the training data. Input:
X - A num_train x dimension array where each row is a training point.
y - A vector of length num_train, where y[i] is the label for X[i, :]
"""
self.X_train = X
self.y_train = y def predict(self, X, k=1, num_loops=0):
"""
Predict labels for test data using this classifier. Input:
X - A num_test x dimension array where each row is a test point.
k - The number of nearest neighbors that vote for predicted label
num_loops - Determines which method to use to compute distances
between training points and test points. Output:
y - A vector of length num_test, where y[i] is the predicted label for the
test point X[i, :].
"""
if num_loops == 0:
dists = self.compute_distances_no_loops(X)
elif num_loops == 1:
dists = self.compute_distances_one_loop(X)
elif num_loops == 2:
dists = self.compute_distances_two_loops(X)
else:
raise ValueError('Invalid value %d for num_loops' % num_loops) return self.predict_labels(dists, k=k) def compute_distances_two_loops(self, X):
"""
Compute the distance between each test point in X and each training point
in self.X_train using a nested loop over both the training data and the
test data. Input:
X - An num_test x dimension array where each row is a test point. Output:
dists - A num_test x num_train array where dists[i, j] is the distance
between the ith test point and the jth training point.
"""
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
for i in xrange(num_test):
for j in xrange(num_train):
#####################################################################
# TODO: #
# Compute the l2 distance between the ith test point and the jth #
# training point, and store the result in dists[i, j] #
#####################################################################
dists[i,j] = np.sqrt(np.sum(np.square(X[i,:] - self.X_train[j,:])))
#####################################################################
# END OF YOUR CODE #
#####################################################################
return dists def compute_distances_one_loop(self, X):
"""
Compute the distance between each test point in X and each training point
in self.X_train using a single loop over the test data. Input / Output: Same as compute_distances_two_loops
"""
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
for i in xrange(num_test):
#######################################################################
# TODO: #
# Compute the l2 distance between the ith test point and all training #
# points, and store the result in dists[i, :]. #
#######################################################################
dists[i, :] = np.sqrt(np.sum(np.square(self.X_train - X[i,:]), axis=1))
#######################################################################
# END OF YOUR CODE #
#######################################################################
return dists def compute_distances_no_loops(self, X):
"""
Compute the distance between each test point in X and each training point
in self.X_train using no explicit loops. Input / Output: Same as compute_distances_two_loops
"""
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
#########################################################################
# TODO: #
# Compute the l2 distance between all test points and all training #
# points without using any explicit loops, and store the result in #
# dists. #
# HINT: Try to formulate the l2 distance using matrix multiplication #
# and two broadcast sums. #
#########################################################################
tDot = np.multiply(np.dot(X, self.X_train.T), -2)
t1 = np.sum(np.square(X), axis=1, keepdims=True)
t2 = np.sum(np.square(self.X_train), axis=1)
tDot = np.add(t1, tDot)
tDot = np.add(tDot, t2)
dists = np.sqrt(tDot)
#########################################################################
# END OF YOUR CODE #
#########################################################################
return dists def predict_labels(self, dists, k=1):
"""
Given a matrix of distances between test points and training points,
predict a label for each test point. Input:
dists - A num_test x num_train array where dists[i, j] gives the distance
between the ith test point and the jth training point. Output:
y - A vector of length num_test where y[i] is the predicted label for the
ith test point.
"""
num_test = dists.shape[0]
y_pred = np.zeros(num_test)
for i in xrange(num_test):
# A list of length k storing the labels of the k nearest neighbors to
# the ith test point.
closest_y = []
#########################################################################
# TODO: #
# Use the distance matrix to find the k nearest neighbors of the ith #
# training point, and use self.y_train to find the labels of these #
# neighbors. Store these labels in closest_y. #
# Hint: Look up the function numpy.argsort. #
#########################################################################
# pass
closest_y = self.y_train[np.argsort(dists[i, :])[:k]]
#########################################################################
# TODO: #
# Now that you have found the labels of the k nearest neighbors, you #
# need to find the most common label in the list closest_y of labels. #
# Store this label in y_pred[i]. Break ties by choosing the smaller #
# label. #
######################################################################### y_pred[i] = np.argmax(np.bincount(closest_y))
#########################################################################
# END OF YOUR CODE #
######################################################################### return y_pred

输出:

Two loop version took 55.817642 seconds
One loop version took 49.692089 seconds
No loop version took 1.267753 seconds

CNN for Visual Recognition (assignment1_Q1)的更多相关文章

  1. CNN for Visual Recognition (01)

    CS231n: Convolutional Neural Networks for Visual Recognitionhttp://vision.stanford.edu/teaching/cs23 ...

  2. CNN for Visual Recognition (02)

    图像分类 参考:http://cs231n.github.io/classification/ 图像分类(Image Classification),是给输入图像赋予一个已知类别标签.图像分类是计算机 ...

  3. 论文笔记之: Bilinear CNN Models for Fine-grained Visual Recognition

    Bilinear CNN Models for Fine-grained Visual Recognition CVPR 2015 本文提出了一种双线性模型( bilinear models),一种识 ...

  4. 大规模视觉识别挑战赛ILSVRC2015各团队结果和方法 Large Scale Visual Recognition Challenge 2015

    Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in thi ...

  5. 【论文阅读】Deep Mixture of Diverse Experts for Large-Scale Visual Recognition

    导读: 本文为论文<Deep Mixture of Diverse Experts for Large-Scale Visual Recognition>的阅读总结.目的是做大规模图像分类 ...

  6. 目标检测--Spatial pyramid pooling in deep convolutional networks for visual recognition(PAMI, 2015)

    Spatial pyramid pooling in deep convolutional networks for visual recognition 作者: Kaiming He, Xiangy ...

  7. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition Kaiming He, Xiangyu Zh ...

  8. Convolutional Neural Networks for Visual Recognition 1

    Introduction 这是斯坦福计算机视觉大牛李菲菲最新开设的一门关于deep learning在计算机视觉领域的相关应用的课程.这个课程重点介绍了deep learning里的一种比较流行的模型 ...

  9. 【CV论文阅读】+【搬运工】LocNet: Improving Localization Accuracy for Object Detection + A Theoretical analysis of feature pooling in Visual Recognition

    论文的关注点在于如何提高bounding box的定位,使用的是概率的预测形式,模型的基础是region proposal.论文提出一个locNet的深度网络,不在依赖于回归方程.论文中提到locne ...

随机推荐

  1. Jenkins + robot framework自动发送邮件报告

    一.Jenkins安装插件 进入系统管理—插件管理—可选插件下安装以下插件Email-ext plugin.Email-ext Template Plugin. 安装完如下: 二.系统设置 1.设置系 ...

  2. javascript系列之核心知识点(一)

    JavaScript. The core. 1.对象 2.原型链 3.构造函数 4.执行上下文堆栈 5.执行上下文 6.变量对象 7.活动对象 8.作用域链 9.闭包 10.this值 11.总结 这 ...

  3. Linux通过编辑器vi使用介绍

    vi编辑器是所有Unix和Linux在标准的编辑系统. 对Unix和Linux该系统无论是什么版本号,vi编辑器是完全一样. 基本上vi它可分为三种状态,每一个是命令模式(commandmode).插 ...

  4. IIS7伪静态化URL Rewrite模块

    原文 IIS7伪静态化URL Rewrite模块 在Win7安装了IIS7.5之后,搭建一些网站或者博客,但是IIS7.5本身没有URL Rewrite功能,也就是无法实现网址的伪静态化. 从网上找了 ...

  5. 图数据库 Titan 高速入门

    尤其在互联网世界,图计算越来越受到人们的关注,而图计算相关的软件也越来越丰富.本文将高速展示 Titan这个open source 的图数据库. 注:本文的操作主要基于Titan 官方的两篇文档: - ...

  6. 枚举 UIButton补充

    一.URL 1.什么是URL? URL是某个资源的唯一路径,通过这个路径就能访问对应的资源 2.URL的组成 协议头://全路径 * 协议头就代表资源的类型,比如http代表网络服务器资源,ftp代表 ...

  7. 分区表在安装系统(MBR)丢失或损坏

    操作系统能识别出硬盘中的各个不同的分区,是靠硬盘分区表(MBR)来识别的. 硬盘分区表中记录了各个分区的位置和大小以及类型等信息,假设这个分区表破坏了,那么这块硬盘里面的分区就会丢失.系统是无法在浏览 ...

  8. SQL点滴17—使用数据库引擎存储过程,系统视图查询,DBA,BI开发人员必备基础知识

    原文:SQL点滴17-使用数据库引擎存储过程,系统视图查询,DBA,BI开发人员必备基础知识 在开发过程中会遇到需要弄清楚这个数据库什么时候建的,这个数据库中有多少表,这个存储过程长的什么样子等等信息 ...

  9. Redis3

    Redis到底该如何利用 上两篇受益匪浅,秉着趁热打铁,不挖到最深不罢休的精神,我决定追加这篇.上一篇里最后我有提到实现分级缓存管理应该是个可行的方案,因此今天特别实践了一下.不过缓存分级之后也发现了 ...

  10. leetcode第七题--Reverse Integer

    Problem: Reverse digits of an integer. Example1: x = 123, return 321Example2: x = -123, return -321 ...