Cake


Time Limit: 1 Second     
Memory Limit: 32768 KB


You want to hold a party. Here's a polygon-shaped cake on the table. You'd like to cut the cake into several triangle-shaped parts for the invited comers. You have a knife to cut. The trace of each cut is a line segment, whose two endpoints are two vertices
of the polygon. Within the polygon, any two cuts ought to be disjoint. Of course, the situation that only the endpoints of two segments intersect is allowed.

The cake's considered as a coordinate system. You have known the coordinates of vexteces. Each cut has a cost related to the coordinate of the vertex, whose formula is
costi, j = |xi + xj| * |yi + yj| % p. You want to calculate the minimum cost.

NOTICE: input assures that NO three adjacent vertices on the polygon-shaped cake are in a line. And the cake is not always a convex.

Input

There're multiple cases. There's a blank line between two cases. The first line of each case contains two integers,
N and p (3 ≤ N, p ≤ 300), indicating the number of vertices. Each line of the following
N lines contains two integers, x and y (-10000 ≤
x, y ≤ 10000), indicating the coordinate of a vertex. You have known that no two vertices are in the same coordinate.

Output

If the cake is not convex polygon-shaped, output "I can't cut.". Otherwise, output the minimum cost.

Sample Input

3 3
0 0
1 1
0 2

Sample Output

0


题意:
给定n个点的坐标,先问这些点能否组成一个凸包,假设是凸包。问用不相交的线来切这个凸包使得凸包仅仅由三角形组成,依据costi, j = |xi + xj| * |yi + yj| % p算切线的费用,问最少的分割费用。


思路:
先判定凸包,求凸包后看点的个数有没有变化。

然后区间dp,dp[i][j]表示切凸多边形i~j时的最小花费,特殊情况顶点个数为2或者3时不用切了为0.
如图i~j引入两条切线ik和kj将凸多边形分为两个凸多边形和一个三角形。
转移dp[i][j]=min(dp[i][k]+dp[k][j]+cost[i][k]+cost[k][j]);
cost[i][j]为切i、j两点时的花费,当j=i+1时花费为0.(凸多边形为三角形)


代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#pragma comment (linker,"/STACK:102400000,102400000")
#define maxn 105
#define MAXN 100005
#define mod 1000000000
#define INF 0x3f3f3f3f
#define pi acos(-1.0)
#define eps 1e-8
typedef long long ll;
using namespace std; int cmp(int x)
{
if(fabs(x)<eps) return 0;
if(x>0) return 1;
return -1;
}
int sqr(int x)
{
return x*x;
}
struct point
{
int x,y;
point(){};
point(int a,int b):x(a),y(b){};
void input()
{
scanf("%d%d",&x,&y);
}
friend point operator +(const point &a,const point &b)
{
return point(a.x+b.x,a.y+b.y);
}
friend point operator -(const point &a,const point &b)
{
return point(a.x-b.x,a.y-b.y);
}
friend bool operator ==(const point &a,const point &b)
{
return cmp(a.x-b.x)==0&&cmp(a.y-b.y)==0;
}
friend point operator *(const point &a,const int &b)
{
return point(a.x*b,a.y*b);
}
friend point operator *(const int &a,const point &b)
{
return point(a*b.x,a*b.y);
}
friend point operator /(const point &a,const int &b)
{
return point(a.x/b,a.y/b);
}
int norm()
{
return sqrt(sqr(x)+sqr(y));
}
};
int det(const point &a,const point &b)
{
return a.x*b.y-a.y*b.x;
}
int dot(const point&a,const point &b)
{
return a.x*b.x+a.y*b.y;
}
int dist(const point &a,const point &b)
{
return (a-b).norm();
} struct polygon_convex
{
vector<point>p;
polygon_convex(int Size=0)
{
p.resize(Size);
}
};
bool comp_less(const point &a,const point &b)
{
return cmp(a.x-b.x)<0||cmp(a.x-b.x)==0&&cmp(a.y-b.y)<0;
}
polygon_convex convex_hull(vector<point> a)
{
polygon_convex res(2*a.size()+5);
sort(a.begin(),a.end(),comp_less);
a.erase(unique(a.begin(),a.end()),a.end());
int m=0;
for(int i=0;i<a.size();i++)
{
while(m>1&&cmp(det(res.p[m-1]-res.p[m-2],a[i]-res.p[m-2]))<=0) m--;
res.p[m++]=a[i];
}
int k=m;
for(int i=int(a.size())-2;i>=0;--i)
{
while(m>k&&cmp(det(res.p[m-1]-res.p[m-2],a[i]-res.p[m-2]))<=0) m--;
res.p[m++]=a[i];
}
res.p.resize(m);
if(a.size()>1) res.p.resize(m-1);
return res;
} int n,m,ans;
int dp[305][305],cost[305][305];
vector<point> pp; int main()
{
int i,j,t;
while(~scanf("%d%d",&n,&m))
{
vector<point> pp;
point tmp;
for(i=1;i<=n;i++)
{
scanf("%d%d",&tmp.x,&tmp.y);
pp.push_back(tmp);
}
polygon_convex tb=convex_hull(pp);
if(tb.p.size()!=n) printf("I can't cut.\n");
else
{
if(n==3)
{
printf("0\n");
continue ;
}
memset(cost,0,sizeof(cost));
for(i=0;i<n;i++)
{
for(j=i+2;j<n;j++)
{
cost[i][j]=(abs(tb.p[i].x+tb.p[j].x)*abs(tb.p[i].y+tb.p[j].y))%m;
}
}
memset(dp,0x3f,sizeof(dp));
for(i=0;i<n-2;i++)
{
dp[i][i+1]=0;
dp[i][i+2]=0;
}
dp[n-2][n-1]=0;
for(int len=4;len<=n;len++)
{
for(i=0;i<n;i++)
{
j=i+len-1;
if(j>=n) break ;
for(int k=i+1;k<=j-1;k++)
{
dp[i][j]=min(dp[i][j],dp[i][k]+dp[k][j]+cost[i][k]+cost[k][j]);
}
}
}
printf("%d\n",dp[0][n-1]);
}
}
return 0;
}
/*
3 3
0 0
1 1
0 2 4 10
0 0
2 0
0 2
2 2 5 11
1 1
1 3
3 1
4 2
3 4
*/




版权声明:本文博客原创文章,博客,未经同意,不得转载。

zoj 3537 Cake (凸包确定+间隔dp)的更多相关文章

  1. ZOJ 3537 Cake(凸包判定+区间DP)

    Cake Time Limit: 1 Second Memory Limit: 32768 KB You want to hold a party. Here's a polygon-shaped c ...

  2. ZOJ - 3537 Cake (凸包+区间DP+最优三角剖分)

    Description You want to hold a party. Here's a polygon-shaped cake on the table. You'd like to cut t ...

  3. zoj 3537 Cake 区间DP (好题)

    题意:切一个凸边行,如果不是凸包直接输出.然后输出最小代价的切割费用,把凸包都切割成三角形. 先判断是否是凸包,然后用三角形优化. dp[i][j]=min(dp[i][j],dp[i][k]+dp[ ...

  4. ZOJ 3537 Cake(凸包+区间DP)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3537 题目大意:给出一些点表示多边形顶点的位置,如果不是凸多边形 ...

  5. ZOJ 3537 Cake 求凸包 区间DP

    题意:给出一些点表示多边形顶点的位置(如果多边形是凹多边形就不能切),切多边形时每次只能在顶点和顶点间切,每切一次都有相应的代价.现在已经给出计算代价的公式,问把多边形切成最多个不相交三角形的最小代价 ...

  6. zoj 3537 Cake(区间dp)

    这道题目是经典的凸包的最优三角剖分,不过这个题目给的可能不是凸包,所以要提前判定一下是否为凸包,如果是凸包的话才能继续剖分,dp[i][j]表示已经排好序的凸包上的点i->j上被分割成一个个小三 ...

  7. 区间DP Zoj 3537 Cake 区间DP 最优三角形剖分

    下面是别人的解题报告的链接,讲解很详细,要注意细节的处理...以及为什么可以这样做 http://blog.csdn.net/woshi250hua/article/details/7824433 我 ...

  8. ZOJ 3537 Cake (区间DP,三角形剖分)

    题意: 给出平面直角坐标系上的n个点的坐标,表示一个多边形蛋糕,先判断是否是凸多边形,若否,输出"I can't cut.".若是,则对这个蛋糕进行3角形剖分,切n-3次变成n-2 ...

  9. ZOJ 3537 (凸包 + 区间DP)(UNFINISHED)

    #include "Head.cpp" const int N = 10007; int n, m; struct Point{ int x,y; bool operator &l ...

随机推荐

  1. ubuntu 12.04安装经典的Gnome桌面

    这次介绍的是如何在ubuntu 12.04 中安装经典的 GNOME桌面,默认的 Ubuntu 12.04 默认unity桌面,一些用户不喜欢 Unity 桌面,所以想找回昔日的经典Gnome桌面. ...

  2. Android 动画具体解释View动画

    为了让用户更舒适的在某些情况下,利用动画是那么非常有必要的.Android在3.0一旦支持两种动画Tween动漫Frame动画.Tween动画支持简单的平移,缩放,旋转,渐变.Frame动画就像Gif ...

  3. SharePoint 2010 BCS - 概要

    博客地址 http://blog.csdn.net/foxdave SharePoint 2010首次引入了BCS的概念 - Business Connectivity Service.即业务连接服务 ...

  4. 什么是“Bash”破绽?

    摘要:近来的linux系统出现"Bash"漏洞可以被认为是第一个互联网造成安全讨论和思考.错的资料. 什么是"Bash"漏洞?它是怎样工作的?它是否可以成为新的 ...

  5. SQL Server数据库视图

    1:什么是视图 2:视图和查询的区别 3:视图的优点 4:如何创建和管理视图 5:如何通过视图修改基本表的数据 6:如何通过视图实现数据的安全性 A:什么是视图: 视图(view):从一个或几个基本表 ...

  6. Android锁定屏幕或关闭状态-screen,高速按两次音量向下键来实现拍摄功能(1.1Framework在实现的形式层广播)

    思想的实现:     WindowManagerService循环读取下面的关键信息和分发形式.在PhoneWindowManager.interceptKeyBeforeQueueing方法中进行消 ...

  7. style.display table-row与block

    <tr id="js_rowShow" style=" display:none"> </tr> 问题: display:设置成bloc ...

  8. PDE_DATA 定义

    PDE_DATA 定义 Location: /fs/proc/internal.h static inline struct proc_dir_entry *PDE(const struct inod ...

  9. 多功能截图工具(WinSnap)4.5.6 绿色汉化版(附注册码)

    http://www.uzzf.com/Soft/9840.html 注册名:www.uzzf.com 注册码:FGE5ML-XD2C0G33-GCMDLRB5

  10. 因host命令导致无法正常SHUTDOWN的实验

    SHUTDOWN有几个參数能够使用: SHUTDOWN NORMAL:NORMAL也是默认的子句,运行的条件是 No new connections are allowed after the sta ...