最近打的几场比赛,都出现了有关逆元的题目,今天就整理了一下...

求乘法逆元的几种方法:http://www.cnblogs.com/james47/p/3871782.html

博文转载链接:http://blog.csdn.net/acdreamers/article/details/8220787

今天我们来探讨逆元在ACM-ICPC竞赛中的应用,逆元是一个很重要的概念,必须学会使用它。

对于正整数,如果有,那么把这个同余方程中的最小正整数解叫做的逆元。

逆元一般用扩展欧几里得算法来求得,如果为素数,那么还可以根据费马小定理得到逆元为

推导过程如下

求现在来看一个逆元最常见问题,求如下表达式的值(已知

当然这个经典的问题有很多方法,最常见的就是扩展欧几里得,如果是素数,还可以用费马小定理。

但是你会发现费马小定理和扩展欧几里得算法求逆元是有局限性的,它们都会要求互素。实际上我们还有一

种通用的求逆元方法,适合所有情况。公式如下

现在我们来证明它,已知,证明步骤如下

乘法逆元...Orz的更多相关文章

  1. [P1082][NOIP2012] 同余方程 (扩展欧几里得/乘法逆元)

    最近想学数论 刚好今天(初赛上午)智推了一个数论题 我屁颠屁颠地去学了乘法逆元 然后水掉了P3811 和 P2613 (zcy吊打集训队!)(逃 然后才开始做这题. 乘法逆元 乘法逆元的思路大致就是a ...

  2. 数论入门2——gcd,lcm,exGCD,欧拉定理,乘法逆元,(ex)CRT,(ex)BSGS,(ex)Lucas,原根,Miller-Rabin,Pollard-Rho

    数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p ...

  3. Bzoj2154 Crash的数字表格 乘法逆元+莫比乌斯反演(TLE)

    题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的 ...

  4. 51nod1256(乘法逆元)

    题目链接: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1256 题意:中文题诶~ 思路: M, N 互质, 求满足 K ...

  5. 【板子】gcd、exgcd、乘法逆元、快速幂、快速乘、筛素数、快速求逆元、组合数

    1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(l ...

  6. HDU 5651 计算回文串个数问题(有重复的全排列、乘法逆元、费马小定理)

    原题: http://acm.hdu.edu.cn/showproblem.php?pid=5651 很容易看出来的是,如果一个字符串中,多于一个字母出现奇数次,则该字符串无法形成回文串,因为不能删减 ...

  7. Codeforces 543D Road Improvement(树形DP + 乘法逆元)

    题目大概说给一棵树,树的边一开始都是损坏的,要修复一些边,修复完后要满足各个点到根的路径上最多只有一条坏的边,现在以各个点为根分别求出修复边的方案数,其结果模1000000007. 不难联想到这题和H ...

  8. HDU 1452 (约数和+乘法逆元)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1452 题目大意:求2004^X所有约数和,结果mod 29. 解题思路: ①整数唯一分解定理: 一个 ...

  9. HDU 1576 (乘法逆元)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1576 题目大意:求(A/B)mod 9973.但是给出的A是mod形式n,n=A%9973. 解题思 ...

随机推荐

  1. HDU 4828 (卡特兰数+逆)

    HDU 4828 Grids 思路:能够转化为卡特兰数,先把前n个人标为0.后n个人标为1.然后去全排列,全排列的数列.假设每一个1的前面相应的0大于等于1,那么就是满足的序列,假设把0看成入栈,1看 ...

  2. 采用jqueryUI创建日期选择器

    该公司的项目使用的插件时间选择,百度很长一段时间.没有找到合适的,而且,他们在看了jqueryUI.自己变成一个更好的集成日期选择器.为了以后遇到相同的问题是可以解决. 以下就贴出部分使用的代码,比較 ...

  3. How to fix Column 'InvariantName' is constrained to be unique 解决办法!

    Introduction When you build a web project that uses Enterprise Library Community for the Application ...

  4. 使用Emacs muse制作幻灯片

    PPT太受欢迎.总是必要的交流会议.我看到一个很酷javascript实现,取代PPT. 不过还是很喜欢Emacs要做的事,即使文件难听点. 现在,用muse slidy, 一大区别. 简单的说mus ...

  5. mysql语句在node.js中的写法

    总结一下mysql语句在node.js中的各种写法,参考了npm网站mysql模块给的实例. 查询 select //1 db.query('select * from tuanshang_users ...

  6. JSON小结

    在 JSON 中,“Object” 是什么呢? json.org 有很好的解释: 1 .An object is an unordered set of name/value pairs. 2.An ...

  7. Android-管理Activity生命周期 -开始一个Activity

    很多程序都是从main()方法开始启动的,和其他程序不同,android是在activity生命周期的特定状态的特定回调方法中初始化代码的.activity启动和销毁的时候都用很多回调方法. 这里将要 ...

  8. UVa 12683 Odd and Even Zeroes(数论+数字DP)

    意甲冠军: 要求 小于或等于n号码 (0<=n <= 1e18)尾数的数的阶乘0数为偶数 思考:当然不是暴力,因此,从数论.尾数0数为偶数,然后,它将使N阶乘5电源是偶数.(二指数肯定少5 ...

  9. 开源Math.NET基础数学类库使用(03)C#解析Matlab的mat格式

    原文:[原创]开源Math.NET基础数学类库使用(03)C#解析Matlab的mat格式 开源Math.NET基础数学类库使用系列文章总目录:   1.开源.NET基础数学计算组件Math.NET( ...

  10. Robotium调用getActivity()导致程序挂起的方法

    1. 问题背景的叙述性说明 需要直接用在工作中没有项目的源代码robotium测试目标android平台launcher,该平台的基础上,当前日期的版本号android 4.4.2.之前我用来验证的可 ...