mysql sql优化实例
mysql sql优化实例
优化前:
pt-query-degist分析结果:
# Query 3: 0.00 QPS, 0.00x concurrency, ID 0xDC6E62FA021C85B5 at byte 628331
# This item is included in the report because it matches --limit.
# Scores: V/M = 0.19
# Time range: 2016-09-24T15:14:24 to 2016-10-08T07:46:24
# Attribute pct total min max avg 95% stddev median
# ============ === ======= ======= ======= ======= ======= ======= =======
# Count 12 50
# Exec time 6 623s 10s 16s 12s 15s 2s 11s
# Lock time 0 28ms 176us 12ms 553us 568us 2ms 287us
# Rows sent 0 162 3 5 3.24 4.96 0.67 2.90
# Rows examine 11 776.54k 13.80k 16.19k 15.53k 15.96k 761.60 15.96k
# Query size 7 12.74k 261 261 261 261 0 261
# String:
# Databases wechat_prod
# Hosts localhost
# Users test
# Query_time distribution
# 1us
# 10us
# 100us
# 1ms
# 10ms
# 100ms
# 1s
# 10s+ ################################################################
# Tables
# SHOW TABLE STATUS FROM `wechat_prod` LIKE 'product'\G
# SHOW CREATE TABLE `wechat_prod`.`product`\G
# SHOW TABLE STATUS FROM `wechat_prod` LIKE 'sys_members'\G
# SHOW CREATE TABLE `wechat_prod`.`sys_members`\G
# SHOW TABLE STATUS FROM `wechat_prod` LIKE 'product_sku'\G
# SHOW CREATE TABLE `wechat_prod`.`product_sku`\G
# EXPLAIN /*!50100 PARTITIONS*/
SELECT `p`.`id`, `p`.`title`, `p`.`fare`, `p`.`sales`, `p`.`user_openid`, `u`.`nickname`, `s`.`price` FROM `product` `p` LEFT JOIN `sys_members` `u` ON p.user_openid = u.openid
LEFT JOIN `product_sku` `s` ON s.product_id = p.id ORDER BY `wd_sort` LIMIT 3\G
sql 分析
mysql> EXPLAIN /*!50100 PARTITIONS*/
-> SELECT `p`.`id`, `p`.`title`, `p`.`fare`, `p`.`sales`, `p`.`user_openid`, `u`.`nickname`, `s`.`price` FROM `product` `p` LEFT JOIN `sys_members` `u` ON p.user_openid = u.openid
-> LEFT JOIN `product_sku` `s` ON s.product_id = p.id ORDER BY `wd_sort` LIMIT 3\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: p
partitions: NULL
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 2413
filtered: 100.00
Extra: Using temporary; Using filesort
*************************** 2. row ***************************
id: 1
select_type: SIMPLE
table: u
partitions: NULL
type: eq_ref
possible_keys: openid
key: openid
key_len: 152
ref: wechat_prod.p.user_openid
rows: 1
filtered: 100.00
Extra: Using where
*************************** 3. row ***************************
id: 1
select_type: SIMPLE
table: s
partitions: NULL
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 518
filtered: 100.00
Extra: Using where; Using join buffer (Block Nested Loop)
3 rows in set, 2 warnings (0.00 sec)
product
和product_sku
表都没有使用索引。
其中product
表的分析结果为Extra: Using temporary; Using filesort
,此结果表示使用了临时文件排序,product_sku
表的分析结果为Extra: Using where; Using join buffer (Block Nested Loop)
,而此结果表示使用了循环查找,扫描了518行。
product
表表结构:
CREATE TABLE `product` (
`id` bigint(20) NOT NULL AUTO_INCREMENT,
`title` varchar(64) DEFAULT NULL ,
`description` varchar(1200) DEFAULT '' ,
`cat_id` smallint(6) DEFAULT '1' ,
`on_sell` tinyint(4) DEFAULT NULL,
`sort` int(8) DEFAULT NULL ,
`nice` tinyint(4) DEFAULT NULL ,
`user_openid` varchar(32) DEFAULT NULL ,
`is_return` tinyint(2) DEFAULT NULL ,
`fare` tinyint(4) DEFAULT NULL ,
`content` text COMMENT ,
`add_time` int(11) DEFAULT NULL ,
`sales` int(11) DEFAULT '0' ,
`if_audit` tinyint(1) DEFAULT '1,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=3321 DEFAULT CHARSET=utf8
product_sku
表表结构:
CREATE TABLE `product_sku` (
`id` bigint(20) NOT NULL AUTO_INCREMENT,
`product_id` bigint(20) DEFAULT NULL,
`name` varchar(64) DEFAULT NULL ,
`count` int(8) DEFAULT NULL ,
`price` decimal(10,2) DEFAULT NULL ,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=3367 DEFAULT CHARSET=utf8
添加索引
alter table product add index user_openid(user_openid);
alter table product_sku add index product_id(product_id);
分析添加索引后的查询情况
mysql> explain SELECT `p`.`id`, `p`.`title`, `p`.`fare`, `p`.`sales`, `p`.`user_openid`, `u`.`nickname`, `s`.`price` FROM `product` `p` LEFT JOIN `sys_members` `u` ON p.user_openid = u.openid LEFT JOIN `product_sku` `s` ON s.product_id = p.id LIMIT 3;
+----+-------------+-------+------------+--------+---------------+---------------+---------+--------------------------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+--------+---------------+---------------+---------+--------------------------+------+----------+-------------+
| 1 | SIMPLE | p | NULL | ALL | NULL | NULL | NULL | NULL | 2413 | 100.00 | NULL |
| 1 | SIMPLE | u | NULL | eq_ref | openid | openid | 152 | wechat_prod.p.user_openid | 1 | 100.00 | Using where |
| 1 | SIMPLE | s | NULL | ref | product_id | product_id | 9 | wechat_prod.p.id | 1 | 100.00 | NULL |
+----+-------------+-------+------------+--------+---------------+---------------+---------+--------------------------+------+----------+-------------+
3 rows in set, 1 warning (0.00 sec)
使用索引后,product_sku
表只扫描了1行。
由平均的12s降为0.0几秒
,几乎可以忽略不计。
mysql sql优化实例的更多相关文章
- mysql sql优化实例1(force index使用)
今天和运维同学一块查找mysql慢查询日志,发现了如下一条sql: SELECT sum(`android` + ios) total,pictureid,title,add_time FROM `j ...
- Mysql SQL优化&执行计划
SQL优化准则 禁用select * 使用select count(*) 统计行数 尽量少运算 尽量避免全表扫描,如果可以,在过滤列建立索引 尽量避免在where子句对字段进行null判断 尽量避免在 ...
- 18.Mysql SQL优化
18.SQL优化18.1 优化SQL语句的一般步骤 18.1.1 通过show status命令了解各种SQL的执行频率show [session|global] status; -- 查看服务器状态 ...
- mysql sql优化及注意事项
sql优化分析 通过slow_log等方式可以捕获慢查询sql,然后就是减少其对io和cpu的使用(不合理的索引.不必要的数据访问和排序)当我们面对具体的sql时,首先查看其执行计划A.看其是否使用索 ...
- MySQL sql优化(摘抄自文档)
前言 有人反馈之前几篇文章过于理论缺少实际操作细节,这篇文章就多一些可操作性的内容吧. 注:这篇文章是以 MySQL 为背景,很多内容同时适用于其他关系型数据库,需要有一些索引知识为基础. 优化目标 ...
- MySQL SQL优化
一.优化数据库的一般步骤: (A) 通过 show status 命令了解各种SQL的执行频率. (B) 定位执行效率较低的SQL语句,方法两种: 事后查询定位:慢查询日志:--log-slow-qu ...
- MySQL SQL优化之in与range查询【转】
本文来自:http://myrock.github.io/ 首先我们来说下in()这种方式的查询.在<高性能MySQL>里面提及用in这种方式可以有效的替代一定的range查询,提升查询效 ...
- MySql Sql 优化技巧分享
有天发现一个带inner join的sql 执行速度虽然不是很慢(0.1-0.2),但是没有达到理想速度.两个表关联,且关联的字段都是主键,查询的字段是唯一索引. sql如下: SELECT p_it ...
- MySQL索引优化实例说明
下面分别创建三张表,并分别插入1W条简单的数据用来测试,详情如下: [1] test_a 有主键但无索引 CREATE TABLE `test_a` ( `id` int(10) unsign ...
随机推荐
- EF7 使用 K EF 异常
在使用EF 7 Code first功能时. k ef 报如下错误: 解决办法: 在project.json 同级目录下新建k.cmd,内容如下: "%~dp0approot\runtime ...
- Mongodb学习笔记一(Mongodb环境配置)
Mongodb学习 说明: MongoDB由databases组成,database由collections组成,collection由documents组成,document由fileds组成.Mo ...
- JS组件系列——使用HTML标签的data属性初始化JS组件
前言:最近使用bootstrap组件的时候发现一个易用性问题,很多简单的组件初始化都需要在JS里面写很多的初始化代码,比如一个简单的select标签,因为仅仅只是需要从后台获取数据填充到option里 ...
- Python学习之day2
1.执行Python脚本时打印的字符有颜色 print "\033[32;1mhello\033[0m" #打印绿色 print "\033[31;1mhello\033 ...
- 走进AngularJs(二) ng模板中常用指令的使用方式
通过使用模板,我们可以把model和controller中的数据组装起来呈现给浏览器,还可以通过数据绑定,实时更新视图,让我们的页面变成动态的.ng的模板真是让我爱不释手.学习ng道路还很漫长,从模板 ...
- Matplotlib 学习笔记
注:该文是上了开智学堂数据科学基础班的课后做的笔记,主讲人是肖凯老师. 数据绘图 数据可视化的原则 为什么要做数据可视化? 为什么要做数据可视化?因为可视化后获取信息的效率高.为什么可视化后获取信息的 ...
- Hadoop中pid文件存储
我的hadoop集群部署在自己电脑虚拟机上,有时候我是挂起虚拟机,第二天再打开发现有些线程就挂了,比如namenode,好奇怪,当时看了一些帖子说是和pid存储有关,找到log看到找不到pid.因为基 ...
- POJ2417 Discrete Logging
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- [C#] 使用NPOI将Datatable保存到Excel
using (table) { IWorkbook workbook = new HSSFWorkbook(); ISheet sheet = workbook.CreateSheet(); IRow ...
- 框架集(Framesets)
1.Frameset的使用 所谓框架便是网页画面分成几个框窗,同时取得多个 URL.只 要 <FRAMESET> <FRAME> 即可,而所有框架标记 要放在一个总起的 htm ...