ASP.NET Core中使用漏桶算法限流
漏桶算法是限流的四大主流算法之一,其应用场景各种资料中介绍的不多,一般都是说应用在网络流量控制中。这里举两个例子:
1、目前家庭上网都会限制一个固定的带宽,比如100M、200M等,一栋楼有很多的用户,那么运营商怎么保证某些用户没有使用过多的带宽,从而影响到别人呢?这时就可以使用漏桶算法,限制每个用户访问网络的最大带宽,当然实际会比这复杂很多。
2、有一个祖传接口,当时写的时候没有任何保护措施,现在访问量稍微大点就会崩溃,但是代码谁也改不动。这时候也可以用漏桶算法,把这个接口封装一下,将外部请求通过漏桶算法进行整流,再转发给这个接口,此时访问频率不会超过阈值,接口就不会崩溃了。
算法原理
说了这么多,那漏桶算法到底是怎么解决问题的呢?请看下图。

接收到请求后,先把请求放到一个漏桶中,漏桶以恒定的速率漏出请求,然后漏出的请求被处理;如果接收请求的速度过快,导致漏桶满了,则丢弃新的请求。
可以看出,漏桶算法主要是通过恒速的方式输出,给后续数据处理一个稳定的输入。这样它就能应对一定的突发流量,使系统不会因为请求量突增而导致崩溃,只不过是通过增加延迟的方式,会有那么一点浪费资源,这和令牌桶的处理方式不同,关于令牌桶算法可以看这篇文章:ASP.NET Core中使用令牌桶限流。
还有一个不常提及的好处,恒速的输出有时候也可以提升效率,比如一次允许漏出两个请求,则可以将两次处理合并为一次处理,如果每次处理都涉及到网络IO,则合并处理就有机会减少网络IO的开销。
算法实现
这里讲两种实现方法:进程内即内存漏桶算法、基于Redis的漏桶算法。
进程内即内存漏桶算法
这里在请求时计算漏出数量,没有单独的漏出处理,描述的算法稍显复杂,不过只需要增加一点耐心,也很容易理解。
先来定义几个变量:
对于漏出速率,用 [每X时间周期Y个] 来表示。X时间周期一般是若干秒、分钟、小时等时间跨度。
对于当前时间周期的开始时间用Ts表示,当前时间周期的结束时间用Te表示,当前时间用Ti表示。
对于漏桶容量,用Z来表示。
对于X时间内的所有请求数量,用N来表示。
当请求到达时,则可以按以下次序处理:
如果Ti-Ts<=X,说明还在当前时间周期内,先增加N的值:
- 比较N和Y,如果N<=Y,则请求无需等待,直接漏出,进入处理阶段;
- 如果N>Y,则比较N与Y+Z:
- 如果N<=Y+Z,则请求进入漏桶等待,等待时间为:(math.ceiling((N-Y)/Y)-1)*X+(Te - Ti),等待结束后漏出,进入处理阶段;
- 如果N>Y+Z,则请求无法进入漏桶,只能丢弃掉,实现上就是拒绝请求;
如果Ti-Ts>X,则需要创建新的时间周期:
- 计算过去了几个时间周期:Pn=math.ceiling((Ti-Te)/X);
- 重设Ts和Te的值:Ts=上次的Ts+Pn*X,Te=Ts+X;
- 计算这段时间最大可以漏出的数量:Yo=Pn*Y;
- 计算N的值:N= N-Yo<=0 ? 0: N-Yo;
- 此时符合Ti-Ts<=X,又在当前时间周期内了,再回到上边的步骤依次处理。
基于Redis的漏桶算法
基于Redis也可以实现上述的算法,只不过变量的表示方式换成了Redis KV,算法逻辑还是一样的。
这些操作逻辑可以封装在一个Lua script中,因为Lua script在Redis中执行时也是原子操作,所以Redis的限流计数在分布式部署时天然就是准确的。
应用算法
这里以限流组件 FireflySoft.RateLimit 为例,实现ASP.NET Core中的漏桶算法限流。
1、安装Nuget包
有多种安装方式,选择自己喜欢的就行了。
包管理器命令:
Install-Package FireflySoft.RateLimit.AspNetCore
或者.NET命令:
dotnet add package FireflySoft.RateLimit.AspNetCore
或者项目文件直接添加:
<ItemGroup>
<PackageReference Include="FireflySoft.RateLimit.AspNetCore" Version="2.*" />
</ItemGroup>
2、使用中间件
在Startup中使用中间件,演示代码如下(下边会有详细说明):
public void ConfigureServices(IServiceCollection services)
{
...
app.AddRateLimit(new InProcessLeakyBucketAlgorithm(
new[] {
// 三个参数:漏桶的容量、单位时间漏出的数量、漏出的单位时间
new LeakyBucketRule(20,10, TimeSpan.FromSeconds(1))
{
ExtractTarget = context =>
{
// 提取限流目标
return (context as HttpContext).Request.Path.Value;
},
CheckRuleMatching = context =>
{
// 判断当前请求是否需要限流处理
return true;
},
Name="leaky bucket limit rule",
}
})
);
...
}
public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
...
app.UseRateLimit();
...
}
如上需要先注册服务,然后使用中间件。
注册服务的时候需要提供限流算法和对应的规则:
- 这里使用进程内漏桶算法InProcessLeakyBucketAlgorithm,还可以使用RedisLeakyBucketAlgorithm,需要传入一个Redis连接。两种算法都支持同步和异步方法。
- 漏桶的容量是20,单位时间漏出的数量10,漏出的单位时间是1秒。也就是说1秒漏出10个,1秒内超出10个请求就会被延迟处理,加上漏桶的容量,1秒内超出30个请求就会被限流。
- ExtractTarget用于提取限流目标,这里是每个不同的请求Path,可以根据需求从当前请求中提取关键数据,然后设定各种限流目标。如果有IO请求,这里还支持对应的异步方法ExtractTargetAsync。
- CheckRuleMatching用于验证当前请求是否限流,传入的对象也是当前请求,方便提取关键数据进行验证。如果有IO请求,这里还支持对应的异步方法CheckRuleMatchingAsync。
- 默认被限流时会返回HttpStatusCode 429,可以在AddRateLimit时使用可选参数error自定义这个值,以及Http Header和Body中的内容。
基本的使用就是上边例子中的这些了。
如果还是基于传统的.NET Framework,则需要在Application_Start中注册一个消息处理器RateLimitHandler,算法和规则部分都是共用的,具体可以看Github上的使用说明:https://github.com/bosima/FireflySoft.RateLimit#aspnet
FireflySoft.RateLimit 是一个基于 .NET Standard 的限流类库,其内核简单轻巧,能够灵活应对各种需求的限流场景。
其主要特点包括:
- 多种限流算法:内置固定窗口、滑动窗口、漏桶、令牌桶四种算法,还可自定义扩展。
- 多种计数存储:目前支持内存、Redis两种存储方式。
- 分布式友好:通过Redis存储支持分布式程序统一计数。
- 限流目标灵活:可以从请求中提取各种数据用于设置限流目标。
- 支持限流惩罚:可以在客户端触发限流后锁定一段时间不允许其访问。
- 动态更改规则:支持程序运行时动态更改限流规则。
- 自定义错误:可以自定义触发限流后的错误码和错误消息。
- 普适性:原则上可以满足任何需要限流的场景。
Github开源地址:https://github.com/bosima/FireflySoft.RateLimit
收获更多架构知识,请关注公众号 萤火架构。原创内容,转载请注明出处。
ASP.NET Core中使用漏桶算法限流的更多相关文章
- coding++:高并发解决方案限流技术---漏桶算法限流--demo
1.漏桶算法 漏桶作为计量工具(The Leaky Bucket Algorithm as a Meter)时,可以用于流量整形(Traffic Shaping)和流量控制(TrafficPolici ...
- ASP.NET Core中使用令牌桶限流
在限流时一般会限制每秒或每分钟的请求数,简单点一般会采用计数器算法,这种算法实现相对简单,也很高效,但是无法应对瞬时的突发流量. 比如限流每秒100次请求,绝大多数的时间里都不会超过这个数,但是偶尔某 ...
- ASP.NET Core中如何对不同类型的用户进行区别限流
老板提出了一个新需求,从某某天起,免费用户每天只能查询100次,收费用户100W次. 这是一个限流问题,聪明的你也一定想到了如何去做:记录用户每一天的查询次数,然后根据当前用户的类型使用不同的数字做比 ...
- ASP.NET Core中使用固定窗口限流
算法原理 固定窗口算法又称计数器算法,是一种简单的限流算法.在单位时间内设定一个阈值和一个计数值,每收到一个请求则计数值加一,如果计数值超过阈值则触发限流,如果达不到则请求正常处理,进入下一个单位时间 ...
- ASP.NET Core中使用滑动窗口限流
滑动窗口算法用于应对请求在时间周期中分布不均匀的情况,能够更精确的应对流量变化,比较著名的应用场景就是TCP协议的流量控制,不过今天要说的是服务限流场景中的应用. 算法原理 这里假设业务需要每秒钟限流 ...
- Sentinel限流之快速失败和漏桶算法
距离上次总结Sentinel的滑动窗口算法已经有些时间了,原本想着一口气将它的core模块全部总结完,但是中间一懒就又松懈下来了,这几天在工作之余又重新整理了一下,在这里做一个学习总结. 上篇滑动窗口 ...
- ASP.NET Core中的依赖注入(1):控制反转(IoC)
ASP.NET Core在启动以及后续针对每个请求的处理过程中的各个环节都需要相应的组件提供相应的服务,为了方便对这些组件进行定制,ASP.NET通过定义接口的方式对它们进行了"标准化&qu ...
- ASP.NET Core中的OWASP Top 10 十大风险-失效的访问控制与Session管理
不定时更新翻译系列,此系列更新毫无时间规律,文笔菜翻译菜求各位看官老爷们轻喷,如觉得我翻译有问题请挪步原博客地址 本博文翻译自: https://dotnetcoretutorials.com/201 ...
- Asp.net Core中SignalR Core预览版的一些新特性前瞻,附源码(消息订阅与发送二进制数据)
目录 SignalR系列目录(注意,是ASP.NET的目录.不是Core的) 前言 一晃一个月又过去了,上个月有个比较大的项目要验收上线.所以忙的脚不沾地.现在终于可以忙里偷闲,写一篇关于Signal ...
随机推荐
- 行星万象表白墙微信小程序、社交微信小程序,后台完整,支持多区域运营,扫码体验。
简介 中国目前大概有5000个表白墙,累计用户近3000万,是一个庞大的群体,但现在大都以微信朋友圈为基础进行信息中转,但是这种模式经营者和用户都不友好,尤其是经营者无法变现,用户无法公开评论,这些种 ...
- [bzoj4971]记忆中的背包
为了使得方案的形式较为单一,不妨强制物品体积为1或$\ge \lceil\frac{w}{2}\rceil$,那么假设最终有$x$个1且$\ge \lceil\frac{w}{2}\rceil$的物品 ...
- es插件安装
首先安装找到一样版本的地址: Release v7.6.1 · medcl/elasticsearch-analysis-ik (github.com) 下载最上面的编译版 将文件解压到plugins ...
- 链式调用Builder
使用Lombok实现链式调用 1.静态调用 User对象: 对象中必须有一个值不为空staticname作为指定的参数并调用对象 @Accessors(chain = true) @Getter @S ...
- 如何理解Casbin的权限控制
概念: Casbin是什么? Casbin是一个访问控制框架,可以支持多种访问控制模型(如ACL.RBAC.ABAC等) 目的: 我们最终想要实现的效果: 可以控制某一个人/角色(sub)能否对某个资 ...
- SpringSecurity过滤器原理
SpringSecurity原理 主要过滤器链 SpringSecurity的功能主要是由一系列的过滤器链相互配合完成的.验证一个过滤器之后放行到下一个过滤器链,然后到最后. 认证流程 过滤器作用 S ...
- Codeforces 547E - Mike and Friends(AC 自动机+树状数组)
题面传送门 好久每做过 AC 自动机的题了--做几个题回忆一下罢 AC 自动机能够解决多串匹配问题,注意是匹配,碰到前后缀的问题那多半不在 AC 自动机能解决的范围内. 在初学 AC 自动机的时候相信 ...
- 【基因组预测】braker2基因结构注释要点记录
目录 流程使用 问题 记录下braker2的使用要点,以备忘记. 流程使用 braker2有很多流程,根据你的数据:组装的基因组.转录组.蛋白(同源,包括近缘或远缘)选择不同流程,官网有说明: htt ...
- R语言与医学统计图形【6】低级绘图函数
R语言基础绘图系统 基础绘图包之低级绘图函数--定义坐标轴.图例.文本 低级绘图函数:本身不具备图形绘制能力,只是在已有图形基础上添加元素. 函数 功能 arrows 添加箭头 axis 坐标轴 bo ...
- dokuwiki使用随笔
1. 在dokuwiki上安装MataJax插件后: a. $....$:之间书写数学公式;如完全平方公式:$a^2+b^2+2ab$,该公式将与当前行文字处于同一行; b. $$ .... $$ 之 ...