AtCoder Beginner Contest 213 F题 题解
F - Common Prefixes
该题也是囤了好久的题目了,看题目公共前缀,再扫一眼题目,嗯求每个后缀与其他后缀的公共前缀的和,那不就是后缀数组吗?对于这类问题后缀数组可是相当在行的。
我们用后缀数组的思想转化下题意就是:
经过后缀排序,我们得到\(height\)数组,考虑排名从小到大依次处理每一个字符串,显然对于一个后缀i而言\(ans(sa[i])=\sum_{j=2}^{i} min_{k=j}^i (a_k)+\sum_{j=i+1}^{n} min_{k=i+1}^j(a_k)\)这样我们可以考虑拆开考虑,只考虑起一个\(\sum\)的结果,可以发现如果我们有办法做第一个的话,第二个只需要到这循环做一遍就可以了。接下来我们只考虑第一个\(\sum\)如何快速计算,一般这种题都有两种思路要么是根据某种数据结构达到快速查询到所需结果的目的,要么是根据i和i-1的关系来从上一个值递推出这个值得结果。第一种办法显然有点想不通,考虑第二种结果,我们将i从1递增看看到底有什么关系,
\(i=1\) 答案为空集
\(i=2\) \(ans=a_2\)
\(i=3\) \(ans=min(a_2,a_3)+a_3\)
\(i=4\) \(ans=min(a_2,a_3,a_4)+min(a_3,a_4)+a_4\)
\(...\)
大致可以得到些结论,当i从2开始递增时,每次都会新增一个数\(a_i\)并且对当前所有的数都和\(a_i\)取min再操作。也就是说,我们每次都要和新来的数比大小,看当前保存的数能否比他小,若新来的数比较小的话就取代之前的数,这不就是单调栈吗?我们可以维护一个递增的单调栈,并且维护下每个数出现的次数,若有元素出站,就将它的次数累加到将它弹出站的元素身上。
查看代码
//不等,不问,不犹豫,不回头.
#include
#define _ 0
#define ls p<<1
#define db double
#define rs p<<1|1
#define P 1000000007
#define ll long long
#define INF 1000000000
#define get(x) x=read()
#define PLI pair
#define PII pair
#define ull unsigned long long
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define rep(x,y,z) for(int x=y;x<=z;++x)
#define fep(x,y,z) for(int x=y;x>=z;--x)
#define go(x) for(RE int i=link[x],y=a[i].y;i;y=a[i=a[i].next].y)
using namespace std;
const int N=2e6+10;
int n,tax[N],rak[N],sa[N],tp[N],height[N],M;
int sack[N],top,cnt[N];
ll ans[N];
char c[N]; inline int read()
{
int x=0,ff=1;
char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') ff=-1;ch=getchar();}
while(isdigit(ch)) {x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
return x*ff;
} inline void Qsort()
{
rep(i,0,M) tax[i]=0;
rep(i,1,n) tax[rak[i]]++;
rep(i,1,M) tax[i]+=tax[i-1];
fep(i,n,1) sa[tax[rak[tp[i]]]--]=tp[i];
} inline void Suffixsort()
{
M=75;
rep(i,1,n) rak[i]=c[i]-'0'+1,tp[i]=i;
Qsort();
for(int w=1,p=0;p<n;M=p,w<<=1)
{
p=0;
rep(i,1,w) tp[++p]=n-w+i;
rep(i,1,n) if(sa[i]>w) tp[++p]=sa[i]-w;
Qsort();
swap(tp,rak);
rak[sa[1]]=p=1;
rep(i,2,n) rak[sa[i]]=(tp[sa[i]]tp[sa[i-1]]&&tp[sa[i]+w]tp[sa[i-1]+w])?p:++p;
}
} inline void get_height()
{
int j,k=0;
rep(i,1,n)
{
if(k) k--;
j=sa[rak[i]-1];
while(c[i+k]==c[j+k]) ++k;
height[rak[i]]=k;
}
} inline void solve()
{
rep(i,1,n) ans[i]+=n-i+1;
ll p=0;
rep(i,2,n)
{
int ct=1;
while(top&&height[i]<=height[sack[top]])
{
p-=(ll)height[sack[top]]cnt[top];
ct+=cnt[top];
top--;
}
sack[++top]=i;cnt[top]=ct;
p+=(ll)height[sack[top]]cnt[top];
ans[sa[i]]+=p;
}
top=0;p=0;
fep(i,n-1,1)
{
int ct=1;
while(top&&height[i+1]<=height[sack[top]])
{
p-=(ll)height[sack[top]]cnt[top];
ct+=cnt[top];
top--;
}
sack[++top]=i+1;cnt[top]=ct;
p+=(ll)height[sack[top]]cnt[top];
ans[sa[i]]+=p;
}
rep(i,1,n) putl(ans[i]);
} int main()
{
//freopen("1.in","r",stdin);
get(n);
scanf("%s",c+1);
Suffixsort();
get_height();
solve();
return (0_0);
}
//以吾之血,铸吾最后的亡魂.
AtCoder Beginner Contest 213 F题 题解的更多相关文章
- AtCoder Beginner Contest 215 F题题解
F - Dist Max 2 什么时候我才能突破\(F\)题的大关... 算了,不说了,看题. 简化题意:给定\(n\)个点的坐标,定义没两个点的距离为\(min(|x_i-x_j|,|y_i-y_j ...
- AtCoder Beginner Contest 137 F
AtCoder Beginner Contest 137 F 数论鬼题(虽然不算特别数论) 希望你在浏览这篇题解前已经知道了费马小定理 利用用费马小定理构造函数\(g(x)=(x-i)^{P-1}\) ...
- AtCoder Beginner Contest 068 ABCD题
A - ABCxxx Time limit : 2sec / Memory limit : 256MB Score : 100 points Problem Statement This contes ...
- AtCoder Beginner Contest 053 ABCD题
A - ABC/ARC Time limit : 2sec / Memory limit : 256MB Score : 100 points Problem Statement Smeke has ...
- AtCoder Beginner Contest 220部分题(G,H)题解
刚开始的时候被E题卡住了,不过发现是个数学题后就开始使劲推式子,幸运的是推出来了,之后的F题更是树形DP换根的模板吧,就草草的过了,看了一眼G,随便口胡了一下,赶紧打代码,毕竟时间不多了,最后也没打完 ...
- AtCoder Beginner Contest 188 F - +1-1x2 思维题
题目描述 给你两个数 \(x\),\(y\) 可以对 \(x\) 进行 \(+1,-1\) 或 \(\times 2\) 的操作 问最少操作多少次后变为 \(y\) \(x,y \leq 10^{18 ...
- AtCoder Beginner Contest 069 ABCD题
题目链接:http://abc069.contest.atcoder.jp/assignments A - K-City Time limit : 2sec / Memory limit : 256M ...
- AtCoder Beginner Contest 070 ABCD题
题目链接:http://abc070.contest.atcoder.jp/assignments A - Palindromic Number Time limit : 2sec / Memory ...
- AtCoder Beginner Contest 057 ABCD题
A - Remaining Time Time limit : 2sec / Memory limit : 256MB Score : 100 points Problem Statement Dol ...
随机推荐
- Hadoop 2.x安装
1.关闭防火墙 systemctl stop firewalld.service #停止firewallsystemctl disable firewalld.service #禁止firewall开 ...
- gin 源码阅读(2) - http请求是如何流入gin的?
推荐阅读: gin 源码阅读(1) - gin 与 net/http 的关系 本篇文章是 gin 源码分析系列的第二篇,这篇文章我们主要弄清一个问题:一个请求通过 net/http 的 socket ...
- spring入门2-aop和集成测试
1.AOP开发 1.1.简述 作用:面向切面编程:在程序运行期间,在不修改源码的情况下对代码进行增强 优势:减少代码重复,提高开发效率,便于维护 底层:动态代理实现(jdk动态代理,cglib动态代理 ...
- PHP 合并2个链表
输入两个单调递增的链表,输出两个链表合成后的链表,当然我们需要合成后的链表满足单调不减规则. <?php class ListNode{ var $val; var $next = NULL; ...
- 【转载】在Windows终端中显示UTF-8字符
一直苦恼于如何在Windows终端中显示UTF-8字符的问题.比如,在MySQL命令行下,如果数据库的编码是UTF-8,那么,在查询数据库的时候,里面的中文都会变成乱码.今天半无意的搜索了一下,结果发 ...
- java基础面试题(一)
1.java中的数据类型,各占多少个字节? 2.面向对象的特性 1-封装:简单来说,封装就是把数据和操作数据的方法绑定起来,如果需要访问,可以使用已定义的接口进行访问 2-继承:从已有的类得到继承信息 ...
- 基于SpringBoot+Mybatis plus+React.js实现条件选择切换搜索功能
笔记/朱季谦 在写React前端逻辑时,经常遇到可以切换不同条件的列表查询功能,例如下边截图这样的,其实,这块代码基本都一个逻辑,可以一次性将实现过程记录下来,待以后再遇到时,直接根据笔记复用即可. ...
- 数据库MySQL主从-GTID
1.第一步在主服务器上/etc/my.cnf/下添加 log-bin=log-bin server-id=1 gtid_mode=ON enforce_gtid_consistency 2.第二步:重 ...
- Linux下关于用户账户的几个文件解析
Linux下关于用户账户的几个文件解析 Linux是一个多用户系统,但是对于一个多用户共存的系统中,当然不能够出现用户相互越权等一系列的安全问题,所以如何正确的管理账户成为了Linux系统中至关重要的 ...
- mysql数据备份及恢复详细操作
一.数据库数据备份 1.全备 BakDir=/backup/full #创建全备目录 LogFile=/backup/full/bak.log #创建备份日志 Date=`date +%Y%m%d` ...