link

Description

一个长度为 $ n $ 的大数,用 $ S_1S_2S_3 \ldots S_n $表示,其中 $ S_i $ 表示数的第 $ i $ 位,$ S_1 $ 是数的最高位,告诉你一些限制条件,每个条件表示为四个数 $ (l_1, r_1, l_2, r_2) $,即两个长度相同的区间,表示子串 $ S_{l_1}S_{l_1 + 1}S_{l_1 + 2} \ldots S_{r_1} $ 与 $ S_{l_2}S_{l_2 + 1}S_{l_2 + 2} \ldots S_{r_2} $ 完全相同。

比如 $ n = 6 $ 时,某限制条件 $ (l_1 = 1, r_1 = 3, l_2 = 4, r_2 = 6) $,那么 $ 123123 \(、\) 351351 $ 均满足条件,但是 $ 12012 \(、\) 131141 $ 不满足条件,前者数的长度不为 $ 6 $,后者第二位与第五位不同。问满足以上所有条件的数有多少个。

\(n\le 10^5\)

Solution

可以想到,我们用 \(f_{i,j}\) 表示 \([i,i+2^j-1]\) 这一段区间,然后每次合并两个区间就相当于合并 \(f_{l1,k},f_{l2,k}\) 以及 \(f_{r1-2^k+1,k},f_{r2-2^k+1,k}\) 。

然后我们还需要将儿子也下传一下合并标记即可。

Code

#include <bits/stdc++.h>
using namespace std; #define Int register int
#define mod 1000000007
#define MAXN 100005 template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');}
template <typename T> inline void chkmax (T &a,T b){a = max (a,b);}
template <typename T> inline void chkmin (T &a,T b){a = min (a,b);} int n,m,tot,lg[MAXN],f[MAXN][21],ls[MAXN * 21],rs[MAXN * 21],fa[MAXN * 21]; int findSet (int x){return fa[x] == x ? x : fa[x] = findSet (fa[x]);}
void unionSet (int x,int y){
x = findSet (x),y = findSet (y);
if (x == y) return ;
fa[y] = x;
} signed main(){
read (n,m);
for (Int i = 2;i <= n;++ i) lg[i] = lg[i >> 1] + 1;
for (Int j = 0;(1 << j) <= n;++ j)
for (Int i = 1;i + (1 << j) - 1 <= n;++ i)
f[i][j] = ++ tot,fa[tot] = tot;
for (Int j = 1;(1 << j) <= n;++ j)
for (Int i = 1;i + (1 << j) - 1 <= n;++ i)
ls[f[i][j]] = f[i][j - 1],rs[f[i][j]] = f[i + (1 << j - 1)][j - 1];
for (Int i = 1;i <= m;++ i){
int l1,r1,l2,r2;read (l1,r1,l2,r2);
int k = lg[r1 - l1 + 1];
unionSet (f[l1][k],f[l2][k]);
unionSet (f[r1 - (1 << k) + 1][k],f[r2 - (1 << k) + 1][k]);
}
for (Int j = lg[n];j >= 1;-- j)
for (Int i = 1;i + (1 << j) - 1 <= n;++ i){
int t = findSet (f[i][j]);
if (t == f[i][j]) continue;
unionSet (ls[t],ls[f[i][j]]);
unionSet (rs[t],rs[f[i][j]]);
}
int cnt = n,res = 9;
for (Int i = 1;i <= n;++ i) if (findSet (f[i][0]) != f[i][0]) cnt --;
for (Int i = 1;i < cnt;++ i) res = 1ll * res * 10 % mod;
write (res),putchar ('\n');
return 0;
}

题解 「SCOI2016」萌萌哒的更多相关文章

  1. 「SCOI2016」萌萌哒 解题报告

    「SCOI2016」萌萌哒 这思路厉害啊.. 容易发现有个暴力是并查集 然后我想了半天线段树优化无果 然后正解是倍增优化并查集 有这个思路就简单了,就是开一个并查集代表每个开头\(i\)每个长\(2^ ...

  2. 「SCOI2016」萌萌哒

    「SCOI2016」萌萌哒 题目描述 一个长度为 \(n\) 的大数,用 \(S_1S_2S_3 \ldots S_n\) 表示,其中 \(S_i\) 表示数的第 \(i\) 位,\(S_1\) 是数 ...

  3. 【LOJ】#2014. 「SCOI2016」萌萌哒

    题解 这个题好妙啊 首先我们发现,如果我们可以暴力,就是把相同的元素拿并查集合起来,最后统计集合个数\(cnt\) 答案是\(9\*10^{cnt - 1}\) 然而我们做不到= = 我们可以用倍增的 ...

  4. LOJ#2014「SCOI2016」萌萌哒(倍增,并查集优化连边)

    题面 点此看题 题意很明白,就不转述了吧. 题解 题目相当于告诉了我们若干等量关系,每个限制 l 1 , r 1 , l 2 , r 2 \tt l_1,r_1,l_2,r_2 l1​,r1​,l2​ ...

  5. loj2014 「SCOI2016」萌萌哒

    神tm st表+并查集 #include <iostream> #include <cstdio> #include <cmath> using namespace ...

  6. loj#2013. 「SCOI2016」幸运数字 点分治/线性基

    题目链接 loj#2013. 「SCOI2016」幸运数字 题解 和树上路径有管...点分治吧 把询问挂到点上 求出重心后,求出重心到每个点路径上的数的线性基 对于重心为lca的合并寻味,否则标记下传 ...

  7. loj#2015. 「SCOI2016」妖怪 凸函数/三分

    题目链接 loj#2015. 「SCOI2016」妖怪 题解 对于每一项展开 的到\(atk+\frac{dnf}{b}a + dnf + \frac{atk}{a} b\) 令$T = \frac{ ...

  8. loj#2016. 「SCOI2016」美味

    题目链接 loj#2016. 「SCOI2016」美味 题解 对于不带x的怎么做....可持久化trie树 对于带x,和trie树一样贪心 对于答案的二进制位,从高往低位贪心, 二进制可以表示所有的数 ...

  9. loj#2012. 「SCOI2016」背单词

    题目链接 loj#2012. 「SCOI2016」背单词 题解 题面描述有点不清楚. 考虑贪心 type1的花费一定不会是优的,不考虑, 所以先把后缀填进去,对于反串建trie树, 先填父亲再填儿子, ...

随机推荐

  1. react的每个方法为什么一定要bind this

    一开始学习react的时候就了解了react的每个方法都要bind(this)或者使用箭头函数绑定this的指向,到底是为什么要这么写呢,当时要学习的东西太多了就没在意,今天特别好奇(不搞懂不吃饭的态 ...

  2. ubuntu 设置简单密码

    ubuntu自带的修改密码界面要求比较长.比较复杂的密码.但通过命令行可以不受此限制. 用如下命令,按提示输入密码即可. sudo passwd username

  3. 使用 antd 的 form 组件来自定义提交的数据格式

    最近使用antd UI 的表单提交数据,数据里面有的是数组,有的是对象.提交的时候还要去校验参数,让人非常头疼.在我仔细看完文档之后,发现 antd 的 form 组件做的非常不错,这些需求通通不是问 ...

  4. Tomcat 端口配置及原理详解

    1. tomcat 文件配置详细说明 tomcat服务器需配置三个端口才能启动,安装时默认启用了这三个端口,当要运行多个tomcat服务时需要修改这三个端口,不能相同.端口配置路径为tomcat\ c ...

  5. linux grep命令使用详解

    grep是我们最常用的命令之一,但是正真用的熟的不多,把基础命令记牢固,能帮我们节约很多时间 grep的option -A 1 表示找到所有匹配行,并显示所有匹配行后的一行 在错误日志查找时还是很有用 ...

  6. Redis实现主从复制以及sentinel的配置

    redis 是一个高性能的 key-value 数据库. redis 的出现,很大程度补偿了 memcached 这类 keyvalue 存储的不足,在部分场合可以对关系数据库起到很 好的补充作用.它 ...

  7. Spring boot中注册Servlet

    Spring boot中注册Servlet 如何在spring boot项目中注册Servlet呢? 如何在spring boot项目中注册Servlet呢? 由于没有web.xml,无法直接在xml ...

  8. Linux(一)——简介

    aaa https://www.cnblogs.com/three-fighter/p/14644152.html#navigator

  9. noip模拟30

    \(\color{white}{\mathbb{缀以无尽之群星点点,饰以常青之巨木郁郁,可细斟木纹叶脉,独无可极苍穹之览,名之以:密林}}\) 看完题后感觉整套题都没什么思路,而且基本上整场考试确实是 ...

  10. Python - 面向对象编程 - 实战(6)

    需求 设计一个培训机构管理系统,有总部.分校,有学员.老师.员工,实现具体如下需求: 有多个课程,课程要有定价 有多个班级,班级跟课程有关联 有多个学生,学生报名班级,交这个班级对应的课程的费用 有多 ...