Codeforces 1288F - Red-Blue Graph(上下界网络流)
好久没有写过上下界网络流了,先来一题再说(
首先先假设所有边都是蓝边,那么这样首先就有 \(b\times m\) 的花费,但是这样不一定符合条件,就算符合条件也不一定是最优解,因此需要调整。
显然一个点与其相连的边中,红边与蓝边的大小关系可用 \(b-r\) 来衡量,其中 \(b,r\) 分别表示与其相连的蓝边、红边的数量。我们考虑一个反悔贪心的思想,考虑将一条蓝边变成红边会对 \(b-r\) 产生怎样的影响,显然这可以分为两个阶段,一是蓝 \(\to\) 无的阶段,\(b-r\) 的值减一,而是无 \(\to\) 红的阶段,\(b-r\) 的值再次减一。因此考虑用两条边表示这两个阶段,一是 \(u\to v\),容量 \(1\) 费用 \(-b\) 的边,表示蓝 \(\to\) 无的阶段,而是 \(u\to v\),容量 \(1\) 费用 \(r\) 的边,表示无 \(\to\) 红的阶段。由于我们要求最小费用,因此对于两条重边,我们肯定会优先选费用小的走,即费用 \(-b\) 的边,符合我们的建图方式。而经我们这么一建图,一个点的 \(b-r\) 就很好表示了:就是该点的度减去经过该点的流的条数。接下来考虑一个点的限制,对于红点 \(x\),它的 \(b-r\) 应 \(<0\),因此经过它的流的条数应 \(>deg_x\),因此如果它在左部,我们就连边 \((S,x,deg_x+1,2deg_x,0)\),如果它在右部,我们就连边 \((x,T,deg_x+1,2deg_x,0)\)。对于蓝点 \(x\),它的 \(b-r\) 应 \(>0\),因此经过它的流的条数应 \(<deg_x\),因此我们只用把上面连的边中 \((deg_x+1,2deg_x)\) 全部换成 \((0,deg_x-1)\) 即可。对于无色点显然没有任何限制,直接连 \((0,2deg_x)\) 的边即可。然后跑最小费用可行流,答案就是费用 \(+bm\)。
直接跑会出现负环,因为在最小费用可行流中我们连了 \(T\to S\) 的边,而这条边与中间我们连的费用为 \(-b\) 的边构成了大小为 \(-b\) 的环,因此需要消圈。具体消圈方法就是假设负权边满流,然后按照上下界网络流的套路建立虚拟源汇然后连相应的边调整流量即可。
时间复杂度 \(\mathcal O(\text{能过})\)。
const int MAXN=200;
const int MAXV=404;
const int MAXE=5000;
int n1,n2,m,r,b,deg[MAXV+5];char s1[MAXN+5],s2[MAXN+5];
int S1,S2,T1,T2,hd[MAXV+5],to[MAXE+5],nxt[MAXE+5],cst[MAXE+5],cap[MAXE+5],ec=1;
void adde(int u,int v,int f,int c){
if(f<0) puts("-1"),exit(0);
// printf("%d %d %d %d\n",u,v,f,c);
to[++ec]=v;cap[ec]=f;cst[ec]=c;nxt[ec]=hd[u];hd[u]=ec;
to[++ec]=u;cap[ec]=0;cst[ec]=-c;nxt[ec]=hd[v];hd[v]=ec;
}
int sum_has,sum_cst;
void _adde(int u,int v,int l,int r,int c){
adde(u,v,r-l,c);adde(S2,v,l,0);adde(u,T2,l,0);
sum_has+=l;sum_cst+=1ll*l*c;
}
int dis[MAXV+5],lste[MAXV+5],flw[MAXV+5],pre[MAXV+5];
bool inq[MAXV+5];
bool getdis(int S,int T){
memset(dis,63,sizeof(dis));memset(flw,0,sizeof(flw));
dis[S]=0;flw[S]=INF;inq[S]=1;queue<int> q;q.push(S);
while(!q.empty()){
int x=q.front();q.pop();inq[x]=0;
for(int e=hd[x];e;e=nxt[e]){
int y=to[e],z=cap[e],w=cst[e];
if(z&&dis[y]>dis[x]+w){
dis[y]=dis[x]+w;flw[y]=min(flw[x],z);
pre[y]=x;lste[y]=e;
if(!inq[y]) inq[y]=1,q.push(y);
}
}
} return dis[T]<INF;
}
pair<int,int> mcmf(int S,int T){
int mxfl=0,mncst=0;
while(getdis(S,T)){
mncst+=1ll*flw[T]*dis[T];mxfl+=flw[T];
for(int i=T;i^S;i=pre[i]){
cap[lste[i]]-=flw[T];cap[lste[i]^1]+=flw[T];
}
} return mp(mxfl,mncst);
}
int main(){
scanf("%d%d%d%d%d%s%s",&n1,&n2,&m,&r,&b,s1+1,s2+1);
T2=(S2=(T1=(S1=n1+n2+1)+1)+1)+1;
for(int i=1,u,v;i<=m;i++){
scanf("%d%d",&u,&v);v+=n1;
deg[u]++;deg[v]++;adde(v,u,1,b);
adde(S2,v,1,0);adde(u,T2,1,0);
sum_cst-=b;sum_has++;adde(u,v,1,r);
}
for(int i=1;i<=n1;i++){
if(s1[i]=='R') _adde(S1,i,deg[i]+1,deg[i]*2,0);
if(s1[i]=='B') adde(S1,i,deg[i]-1,0);
if(s1[i]=='U') adde(S1,i,deg[i]*2,0);
}
for(int i=1;i<=n2;i++){
if(s2[i]=='R') _adde(i+n1,T1,deg[i+n1]+1,deg[i+n1]*2,0);
if(s2[i]=='B') adde(i+n1,T1,deg[i+n1]-1,0);
if(s2[i]=='U') adde(i+n1,T1,deg[i+n1]*2,0);
} adde(T1,S1,INF,0);
pair<int,int> pr=mcmf(S2,T2);
if(pr.fi!=sum_has) return puts("-1"),0;
int res=sum_cst+pr.se+m*b;
printf("%d\n",res);
for(int i=3,j=1;j<=m;i+=8,j++){
if(cap[i]==1) putchar('B');
else if(cap[i+6]==1) putchar('R');
else putchar('U');
}
return 0;
}
Codeforces 1288F - Red-Blue Graph(上下界网络流)的更多相关文章
- ACM-ICPC 2018 沈阳赛区网络预赛 F. Fantastic Graph (上下界网络流)
正解: #include <bits/stdc++.h> using namespace std; const int INF = 0x3f3f3f3f; const int MAXN=1 ...
- ACM-ICPC 2018 沈阳赛区网络预赛 F. Fantastic Graph (贪心或有源汇上下界网络流)
"Oh, There is a bipartite graph.""Make it Fantastic."X wants to check whether a ...
- ACM-ICPC 2018 沈阳赛区网络预赛 F Fantastic Graph(贪心或有源汇上下界网络流)
https://nanti.jisuanke.com/t/31447 题意 一个二分图,左边N个点,右边M个点,中间K条边,问你是否可以删掉边使得所有点的度数在[L,R]之间 分析 最大流不太会.. ...
- CF#366 704D Captain America 上下界网络流
CF上的题,就不放链接了,打开太慢,直接上题面吧: 平面上有n个点, 第 i 个点的坐标为 ($X_i ,Y_i$), 你需要把每个点染成红色或者蓝色, 染成红色的花费为 r , 染成蓝色的花费为 b ...
- HDU 4940 Destroy Transportation system(无源汇上下界网络流)
Problem Description Tom is a commander, his task is destroying his enemy’s transportation system. Le ...
- 沈阳网络赛 F - 上下界网络流
"Oh, There is a bipartite graph.""Make it Fantastic." X wants to check whether a ...
- hdu 4940 Destroy Transportation system( 无源汇上下界网络流的可行流推断 )
题意:有n个点和m条有向边构成的网络.每条边有两个花费: d:毁坏这条边的花费 b:重建一条双向边的花费 寻找这样两个点集,使得点集s到点集t满足 毁坏全部S到T的路径的费用和 > 毁坏全部T到 ...
- 算法笔记--最大流和最小割 && 最小费用最大流 && 上下界网络流
最大流: 给定指定的一个有向图,其中有两个特殊的点源S(Sources)和汇T(Sinks),每条边有指定的容量(Capacity),求满足条件的从S到T的最大流(MaxFlow). 最小割: 割是网 ...
- POJ 2396 Budget(有源汇上下界网络流)
Description We are supposed to make a budget proposal for this multi-site competition. The budget pr ...
随机推荐
- OO第三单元JML总结
目录 目录一.JML语言的理论基础二.应用工具链三.部署SMT Solver四.部署JMLUnitNG/JMLUnit五.三次作业分析第一次作业第二次作业第三次作业六.总结与心得体会 一.JML语言的 ...
- 2021.8.12考试总结[NOIP模拟37]
T1 数列 考场上切掉的简单题. $a$,$b$与数列中数的正负值对答案无关.全当作正数计算即可. $exgcd$解未知数系数为$a$,$b$,加和为$gcd(a,b)$的不定方程组,再枚举每个数.如 ...
- Linux下有用的命令
ldd 查看依赖的动态库 加上-r可以查看未定的符号 c++ filt 通过编译换名后的函数名查找某经过编译器换名前的函数名 csh 切换c shell source .chsrc 可以刷新环境变量 ...
- Django 实现分页功能(django 2.2.7 python 3.7.5 )
Django 自带名为 Paginator 的分页工具, 方便我们实现分页功能.本文就讲解如何使用 Paginator 实现分页功能. 一. Paginator Paginator 类的作用是将我们需 ...
- Forest v1.5.12 发布,声明式 HTTP 框架,已超过 1.6k star
Forest介绍 Forest 是一个开源的 Java HTTP 客户端框架,它能够将 HTTP 的所有请求信息(包括 URL.Header 以及 Body 等信息)绑定到您自定义的 Interfac ...
- JMeter学习笔记--并发登录测试
账号密码读取文件 1.设置线程数为30,并发用户量就是30个用户同时登录 2.添加同步定时器 添加 Synchronizing Timer 同步定时器,为了阻塞线程,当线程数达到指定数量,再同时释放, ...
- Bootstrap-2栅格系统
栅格系统(使用最新版本bootstrap) Grid options(网格配置) Responsive classes(响应式class) Gutters(间距) Alignment(对齐方式) Re ...
- Linux mem 2.7 内存错误检测 (KASAN) 详解
文章目录 1. 简介 2. Shadow 区域初始化 3. 权限的判断 3.1 read/write 3.2 memxxx() 4. 权限的设置 4.1 buddy 4.1.1 kasan_free_ ...
- MAC电脑如何将常规视频中音频提取出来(转换格式并调整采样频率),并利用讯飞语音识别文字
1.下载好相关视频 2.选中需要提取视频,鼠标右键找到「编码所选视频文件」 3.设置中,下拉选择「仅音频」,点击继续 4.找到已提取成功的音频,鼠标右键或快捷键「command + I」,显示简介.默 ...
- Intellij IDEA 配置Junit
导包: 1.Hamcrest Core 包: https://mvnrepository.com/artifact/org.hamcrest/hamcrest-core/1.3 2.Junit包 ...