Codeforces 1288F - Red-Blue Graph(上下界网络流)
好久没有写过上下界网络流了,先来一题再说(
首先先假设所有边都是蓝边,那么这样首先就有 \(b\times m\) 的花费,但是这样不一定符合条件,就算符合条件也不一定是最优解,因此需要调整。
显然一个点与其相连的边中,红边与蓝边的大小关系可用 \(b-r\) 来衡量,其中 \(b,r\) 分别表示与其相连的蓝边、红边的数量。我们考虑一个反悔贪心的思想,考虑将一条蓝边变成红边会对 \(b-r\) 产生怎样的影响,显然这可以分为两个阶段,一是蓝 \(\to\) 无的阶段,\(b-r\) 的值减一,而是无 \(\to\) 红的阶段,\(b-r\) 的值再次减一。因此考虑用两条边表示这两个阶段,一是 \(u\to v\),容量 \(1\) 费用 \(-b\) 的边,表示蓝 \(\to\) 无的阶段,而是 \(u\to v\),容量 \(1\) 费用 \(r\) 的边,表示无 \(\to\) 红的阶段。由于我们要求最小费用,因此对于两条重边,我们肯定会优先选费用小的走,即费用 \(-b\) 的边,符合我们的建图方式。而经我们这么一建图,一个点的 \(b-r\) 就很好表示了:就是该点的度减去经过该点的流的条数。接下来考虑一个点的限制,对于红点 \(x\),它的 \(b-r\) 应 \(<0\),因此经过它的流的条数应 \(>deg_x\),因此如果它在左部,我们就连边 \((S,x,deg_x+1,2deg_x,0)\),如果它在右部,我们就连边 \((x,T,deg_x+1,2deg_x,0)\)。对于蓝点 \(x\),它的 \(b-r\) 应 \(>0\),因此经过它的流的条数应 \(<deg_x\),因此我们只用把上面连的边中 \((deg_x+1,2deg_x)\) 全部换成 \((0,deg_x-1)\) 即可。对于无色点显然没有任何限制,直接连 \((0,2deg_x)\) 的边即可。然后跑最小费用可行流,答案就是费用 \(+bm\)。
直接跑会出现负环,因为在最小费用可行流中我们连了 \(T\to S\) 的边,而这条边与中间我们连的费用为 \(-b\) 的边构成了大小为 \(-b\) 的环,因此需要消圈。具体消圈方法就是假设负权边满流,然后按照上下界网络流的套路建立虚拟源汇然后连相应的边调整流量即可。
时间复杂度 \(\mathcal O(\text{能过})\)。
const int MAXN=200;
const int MAXV=404;
const int MAXE=5000;
int n1,n2,m,r,b,deg[MAXV+5];char s1[MAXN+5],s2[MAXN+5];
int S1,S2,T1,T2,hd[MAXV+5],to[MAXE+5],nxt[MAXE+5],cst[MAXE+5],cap[MAXE+5],ec=1;
void adde(int u,int v,int f,int c){
if(f<0) puts("-1"),exit(0);
// printf("%d %d %d %d\n",u,v,f,c);
to[++ec]=v;cap[ec]=f;cst[ec]=c;nxt[ec]=hd[u];hd[u]=ec;
to[++ec]=u;cap[ec]=0;cst[ec]=-c;nxt[ec]=hd[v];hd[v]=ec;
}
int sum_has,sum_cst;
void _adde(int u,int v,int l,int r,int c){
adde(u,v,r-l,c);adde(S2,v,l,0);adde(u,T2,l,0);
sum_has+=l;sum_cst+=1ll*l*c;
}
int dis[MAXV+5],lste[MAXV+5],flw[MAXV+5],pre[MAXV+5];
bool inq[MAXV+5];
bool getdis(int S,int T){
memset(dis,63,sizeof(dis));memset(flw,0,sizeof(flw));
dis[S]=0;flw[S]=INF;inq[S]=1;queue<int> q;q.push(S);
while(!q.empty()){
int x=q.front();q.pop();inq[x]=0;
for(int e=hd[x];e;e=nxt[e]){
int y=to[e],z=cap[e],w=cst[e];
if(z&&dis[y]>dis[x]+w){
dis[y]=dis[x]+w;flw[y]=min(flw[x],z);
pre[y]=x;lste[y]=e;
if(!inq[y]) inq[y]=1,q.push(y);
}
}
} return dis[T]<INF;
}
pair<int,int> mcmf(int S,int T){
int mxfl=0,mncst=0;
while(getdis(S,T)){
mncst+=1ll*flw[T]*dis[T];mxfl+=flw[T];
for(int i=T;i^S;i=pre[i]){
cap[lste[i]]-=flw[T];cap[lste[i]^1]+=flw[T];
}
} return mp(mxfl,mncst);
}
int main(){
scanf("%d%d%d%d%d%s%s",&n1,&n2,&m,&r,&b,s1+1,s2+1);
T2=(S2=(T1=(S1=n1+n2+1)+1)+1)+1;
for(int i=1,u,v;i<=m;i++){
scanf("%d%d",&u,&v);v+=n1;
deg[u]++;deg[v]++;adde(v,u,1,b);
adde(S2,v,1,0);adde(u,T2,1,0);
sum_cst-=b;sum_has++;adde(u,v,1,r);
}
for(int i=1;i<=n1;i++){
if(s1[i]=='R') _adde(S1,i,deg[i]+1,deg[i]*2,0);
if(s1[i]=='B') adde(S1,i,deg[i]-1,0);
if(s1[i]=='U') adde(S1,i,deg[i]*2,0);
}
for(int i=1;i<=n2;i++){
if(s2[i]=='R') _adde(i+n1,T1,deg[i+n1]+1,deg[i+n1]*2,0);
if(s2[i]=='B') adde(i+n1,T1,deg[i+n1]-1,0);
if(s2[i]=='U') adde(i+n1,T1,deg[i+n1]*2,0);
} adde(T1,S1,INF,0);
pair<int,int> pr=mcmf(S2,T2);
if(pr.fi!=sum_has) return puts("-1"),0;
int res=sum_cst+pr.se+m*b;
printf("%d\n",res);
for(int i=3,j=1;j<=m;i+=8,j++){
if(cap[i]==1) putchar('B');
else if(cap[i+6]==1) putchar('R');
else putchar('U');
}
return 0;
}
Codeforces 1288F - Red-Blue Graph(上下界网络流)的更多相关文章
- ACM-ICPC 2018 沈阳赛区网络预赛 F. Fantastic Graph (上下界网络流)
正解: #include <bits/stdc++.h> using namespace std; const int INF = 0x3f3f3f3f; const int MAXN=1 ...
- ACM-ICPC 2018 沈阳赛区网络预赛 F. Fantastic Graph (贪心或有源汇上下界网络流)
"Oh, There is a bipartite graph.""Make it Fantastic."X wants to check whether a ...
- ACM-ICPC 2018 沈阳赛区网络预赛 F Fantastic Graph(贪心或有源汇上下界网络流)
https://nanti.jisuanke.com/t/31447 题意 一个二分图,左边N个点,右边M个点,中间K条边,问你是否可以删掉边使得所有点的度数在[L,R]之间 分析 最大流不太会.. ...
- CF#366 704D Captain America 上下界网络流
CF上的题,就不放链接了,打开太慢,直接上题面吧: 平面上有n个点, 第 i 个点的坐标为 ($X_i ,Y_i$), 你需要把每个点染成红色或者蓝色, 染成红色的花费为 r , 染成蓝色的花费为 b ...
- HDU 4940 Destroy Transportation system(无源汇上下界网络流)
Problem Description Tom is a commander, his task is destroying his enemy’s transportation system. Le ...
- 沈阳网络赛 F - 上下界网络流
"Oh, There is a bipartite graph.""Make it Fantastic." X wants to check whether a ...
- hdu 4940 Destroy Transportation system( 无源汇上下界网络流的可行流推断 )
题意:有n个点和m条有向边构成的网络.每条边有两个花费: d:毁坏这条边的花费 b:重建一条双向边的花费 寻找这样两个点集,使得点集s到点集t满足 毁坏全部S到T的路径的费用和 > 毁坏全部T到 ...
- 算法笔记--最大流和最小割 && 最小费用最大流 && 上下界网络流
最大流: 给定指定的一个有向图,其中有两个特殊的点源S(Sources)和汇T(Sinks),每条边有指定的容量(Capacity),求满足条件的从S到T的最大流(MaxFlow). 最小割: 割是网 ...
- POJ 2396 Budget(有源汇上下界网络流)
Description We are supposed to make a budget proposal for this multi-site competition. The budget pr ...
随机推荐
- spring提供的可拓展接口
接口:SmartLifecycle(https://www.jianshu.com/p/7b8f2a97c8f5)
- JS最简单的定时累加计数器
js代码: 1 var timer , k = 0; 2 function star() { 3 k += 1; 4 document.getElementById("num"). ...
- 【UE4】GAMES101 图形学作业1:mvp 模型、视图、投影变换
总览 到目前为止,我们已经学习了如何使用矩阵变换来排列二维或三维空间中的对象.所以现在是时候通过实现一些简单的变换矩阵来获得一些实际经验了.在接下来的三次作业中,我们将要求你去模拟一个基于CPU 的光 ...
- Tekton+Argocd实现自动化流水线
目录 什么是tekton 安装tekton 安装Dashboard Tekton提供的CRD 安装argocd 创建argocd 安装客户端 连接argocd server 创建App 集群中查看效果 ...
- [敏捷软工团队博客]The Agiles 团队介绍&团队采访
项目 内容 课程:北航-2020-春-敏捷软工 博客园班级博客 作业要求 团队作业-团队介绍和采访 团队名称来源 The Agile is The Agile. 敏捷就是敏捷.我们只是敏捷的践行者罢了 ...
- elasticsearch的dsl查询
测试es的dsl查询,准备数据,在插入数据的时候,如果index.type.mapping都没有,es会自动创建 一.数据的准备 curl -XPOST "http://192.168.99 ...
- Spring MVC:HandlerMapping
HandlerMapping 的类图 Spring中存在两种类型的handlers.第一种是 handler mappings(处理程序映射).它们的角色定位与前面所描述的功能完全相同.它们尝试将当前 ...
- 从零开始 DIY 智能家居 - 基于 ESP32 的智能紫外线传感器模块
目录 前言 硬件选择 二.使用步骤 获取代码 设备控制命令: 设备和协议初始化流程: 配置设备信息 回调函数注册 数据获取与上报流程 总结 前言 做了这么多传感器都是自己玩,这次家里人看不下去了,非得 ...
- Linux下文件的三种时间标记:访问时间、修改时间、状态改动时间 (转载)
在windows下,一个文件有:创建时间.修改时间.访问时间. 而在Linux下,一个文件也有三种时间,分别是:访问时间.修改时间.状态改动时间. 两者有此不同,在Linux下没有创建时间的概念,也就 ...
- 链表中倒数第K个结点 牛客网 程序员面试金典 C++ Python
链表中倒数第K个结点 牛客网 程序员面试金典 C++ Python 题目描述 输入一个链表,输出该链表中倒数第k个结点. C++ /* struct ListNode { int val; struc ...