题目背景

自动上次redbag用加法好好的刁难过了yyy同学以后,yyy十分愤怒.他还击给了redbag一题,但是这题他惊讶的发现自己居然也不会,所以只好找你

题目描述

[h1]udp2:第一题因为语言性质问题,比赛结束后将所有c/c++的程序的内存调为2.2mb后重测。[/h1]

他让redbag找众数

他还特意表示,这个众数出现次数超过了一半

一共n个数,而且保证有

n<=2000000

而且每个数<2^31-1

输入格式

第一行一个整数n

第二行n个整数

输出格式

一行,这个众数

输入输出样例

输入 #1
5
2 3 3 3 3
输出 #1

3

说明/提示

时间限制 1s

空间限制 3.5M(你没看错3.5M)

有人想水过,但我告诉你这空间是不够的

//kkksc03偷偷地说:你随便输出一个数字吧,都有1/2的几率。不过这可是乐多赛,值得不值得你看着办。所以最好想一想正解。

思路

Boyer-Moore majority vote algorithm(摩尔投票算法)是一种线性时间复杂度和常数级空间复杂度的算法,用来查找元素序列中的众数(出现次数超过一半的数)。

算法的基本思想:

摩尔投票法的基本思想很简单,在每一轮投票过程中,从数组中找出一对不同的元素,将其从数组中删除。这样不断的删除直到无法再进行投票,如果数组为空,则没有任何元素出现的次数超过该数组长度的一半。如果只存在一种元素,那么这个元素则可能为目标元素。(摘自https://www.jianshu.com/p/c19bb428f57a

在任何数组中,出现次数超过总数一半的数一定最多只有一个

每次从数组中选出一个元素,并设置一个计数器,如果计数器为0,则假设众数x为当前的元素num;如果不为0,判断假设的众数x是否和当前元素num相等,如果相等,计数器+1,否则,计数器-1。

如果到最后计数器为0,那么众数不存在

因为题目保证众数一定存在,所以不需要判断最后计数器的值,只需要输出留在最后的我们假设的众数x的值,即为改数组中的众数

同理,可以拓展到寻找数组中出现次数超过1/3的数

代码

 1 #include <bits/stdc++.h>
2 #define ll long long
3 #define ull unsigned long long
4 #define ms(a,b) memset(a,b,sizeof(a))
5 const int inf=0x3f3f3f3f;
6 const ll INF=0x3f3f3f3f3f3f3f3f;
7 const int maxn=2e7+10;
8 const int mod=1e9+7;
9 const int maxm=1e3+10;
10 using namespace std;
11 int main(int argc, char const *argv[])
12 {
13 ios::sync_with_stdio(false);
14 cin.tie(0);
15 int n;
16 cin>>n;
17 ll x;
18 int res=0;
19 ll ans;
20 int i;
21 for(i=0;i<n;i++)
22 {
23 cin>>x;
24 if(!res)
25 ans=x;
26 if(x==ans)
27 res++;
28 if(x!=ans)
29 res--;
30 }
31 cout<<ans<<endl;
32 return 0;
33 }

洛谷 P2397:yyy loves Maths VI (mode)(摩尔投票算法)的更多相关文章

  1. 洛谷P2397 yyy loves Maths VI (mode)

    P2397 yyy loves Maths VI (mode) 题目背景 自动上次redbag用加法好好的刁难过了yyy同学以后,yyy十分愤怒.他还击给了redbag一题,但是这题他惊讶的发现自己居 ...

  2. [洛谷2397]yyy loves Maths VI

    题目背景 自动上次redbag用加法好好的刁难过了yyy同学以后,yyy十分愤怒.他还击给了redbag一题,但是这题他惊讶的发现自己居然也不会,所以只好找你 题目描述 他让redbag找众数他还特意 ...

  3. bzoj2456 / P2397 yyy loves Maths VI (mode)

    P2397 yyy loves Maths VI (mode) 神奇的摩尔投票法(大雾) 保证众数个数大于一半. 两两相消,剩下的那个必定是众数. 我们只要开2个变量,一个存个数,一个存值即可. (l ...

  4. 洛谷P2396 yyy loves Maths VII

    P2396 yyy loves Maths VII 题目背景 yyy对某些数字有着情有独钟的喜爱,他叫他们为幸运数字;然而他作死太多,所以把自己讨厌的数字成为"厄运数字" 题目描述 ...

  5. 洛谷——P2393 yyy loves Maths II

    P2393 yyy loves Maths II 题目背景 上次蒟蒻redbag可把yyy气坏了,yyy说他只是小学生,蒟蒻redbag这次不坑他了. 题目描述 redbag给了yyy很多个数,要yy ...

  6. 洛谷 P2393 yyy loves Maths II

    P2393 yyy loves Maths II 题目背景 上次蒟蒻redbag可把yyy气坏了,yyy说他只是小学生,蒟蒻redbag这次不坑他了. 题目描述 redbag给了yyy很多个数,要yy ...

  7. [CF327E]Axis Walking([洛谷P2396]yyy loves Maths VII)

    题目大意:给一个长度为$n(1\leqslant n\leqslant24)$的序列$S$和$k(0\leqslant k\leqslant2)$个数. 求有多少种$S$的排列方式使得其任何一个前缀和 ...

  8. 【luogu P2397 yyy loves Maths VI (mode) 】 题解

    题目链接:https://www.luogu.org/problemnew/show/P2397 卡空间. 对于众数出现次数 > n/2 我们考虑rand. 每次正确的概率为1/2,五个测试点, ...

  9. [P2397] yyy loves Maths VI (mode)

    Link: P2397 传送门 Solution: (1)在这里记录一个小小的黑科技:摩尔投票法 (线性时间复杂度,$O(1)$的空间复杂度求众数) 从数组的第一个元素开始,假定它代表的群体的人数是最 ...

  10. Luogu P2397 yyy loves Maths VI (mode)

    题目传送门 虽然只是一道黄题,但还是学到了一点新知识-- 摩尔投票法 用\(O(1)\)的内存,\(O(n)\)的时间来找出一串长度为n的数中的众数,前提是众数出现的次数要大于\(n/2\) 方法很简 ...

随机推荐

  1. PC端申请表

    公司项目需求中要做用html做一个PDF申请表的样式出来.有点意思,贴上来大家看看. 先上效果图: 附上源代码: HTML:<div id="form"> <h2 ...

  2. Go 性能提升tips--边界检查

    1. 什么是边界检查? 边界检查,英文名 Bounds Check Elimination,简称为 BCE.它是 Go 语言中防止数组.切片越界而导致内存不安全的检查手段.如果检查下标已经越界了,就会 ...

  3. 商业创新不能等?用友低代码开发平台YonBuilder为您加速!

    随着云计算.人工智能.物联网.大数据.5G等新一代技术的快速发展,越来越多的企业希望借助技术的力量加速数智化转型,期许通过更加敏捷和强大的应用系统推动企业的商业创新速度.但传统软件开发周期长.开发成本 ...

  4. day06 HTTP协议

    day06 HTTP协议 HTTP协议 什么是http? HTTP 全称:Hyper Text Transfer Protocol 中文名:超文本传输协议 是一种按照URL指示,将超文本文档从一台主机 ...

  5. JavaIO——System对IO的支持、序列化

    1.系统类对IO的支持 在我们学习PriteWriter.PrintStream里面的方法print.println的时候是否观察到其与我们之前一直使用的系统输出很相似呢?其实我们使用的系统输出就是采 ...

  6. Activiti工作流引擎使用详解(一)

    一.IDEA安装activiti插件 在插件库中查找actiBPM,安装该插件,如果找不到该插件,请到插件库中下载该包手动安装,插件地址 http://plugins.jetbrains.com/pl ...

  7. Vue中的8种组件通信方式

    Vue是数据驱动视图更新的框架,所以对于vue来说组件间的数据通信非常重要. 常见使用场景可以分为三类: 父子组件通信: props / $emit $parent / $children provi ...

  8. idea如何在git上将分支代码合并到主干

    1.首先将idea中的代码分支切换到master分支,可以看到我们在dev上提交的代码 在master上是没有的 2.如图所示,在remote branch 上选择分支,点击后面的三角图标,展开之后选 ...

  9. ubuntu qq/微信

    Ubuntu qq&微信安装/启动脚本. Docker 本脚本依赖Docker,需要提前安装好Docker环境.参考https://yeasy.gitbooks.io/docker_pract ...

  10. Java定时器演进过程和生产级分布式任务调度ElasticJob代码实战

    为何要使用分布式任务调度 **本人博客网站 **IT小神 www.itxiaoshen.com 演示项目源码地址** https://gitee.com/yongzhebuju/spring-task ...