题目背景

自动上次redbag用加法好好的刁难过了yyy同学以后,yyy十分愤怒.他还击给了redbag一题,但是这题他惊讶的发现自己居然也不会,所以只好找你

题目描述

[h1]udp2:第一题因为语言性质问题,比赛结束后将所有c/c++的程序的内存调为2.2mb后重测。[/h1]

他让redbag找众数

他还特意表示,这个众数出现次数超过了一半

一共n个数,而且保证有

n<=2000000

而且每个数<2^31-1

输入格式

第一行一个整数n

第二行n个整数

输出格式

一行,这个众数

输入输出样例

输入 #1
5
2 3 3 3 3
输出 #1

3

说明/提示

时间限制 1s

空间限制 3.5M(你没看错3.5M)

有人想水过,但我告诉你这空间是不够的

//kkksc03偷偷地说:你随便输出一个数字吧,都有1/2的几率。不过这可是乐多赛,值得不值得你看着办。所以最好想一想正解。

思路

Boyer-Moore majority vote algorithm(摩尔投票算法)是一种线性时间复杂度和常数级空间复杂度的算法,用来查找元素序列中的众数(出现次数超过一半的数)。

算法的基本思想:

摩尔投票法的基本思想很简单,在每一轮投票过程中,从数组中找出一对不同的元素,将其从数组中删除。这样不断的删除直到无法再进行投票,如果数组为空,则没有任何元素出现的次数超过该数组长度的一半。如果只存在一种元素,那么这个元素则可能为目标元素。(摘自https://www.jianshu.com/p/c19bb428f57a

在任何数组中,出现次数超过总数一半的数一定最多只有一个

每次从数组中选出一个元素,并设置一个计数器,如果计数器为0,则假设众数x为当前的元素num;如果不为0,判断假设的众数x是否和当前元素num相等,如果相等,计数器+1,否则,计数器-1。

如果到最后计数器为0,那么众数不存在

因为题目保证众数一定存在,所以不需要判断最后计数器的值,只需要输出留在最后的我们假设的众数x的值,即为改数组中的众数

同理,可以拓展到寻找数组中出现次数超过1/3的数

代码

 1 #include <bits/stdc++.h>
2 #define ll long long
3 #define ull unsigned long long
4 #define ms(a,b) memset(a,b,sizeof(a))
5 const int inf=0x3f3f3f3f;
6 const ll INF=0x3f3f3f3f3f3f3f3f;
7 const int maxn=2e7+10;
8 const int mod=1e9+7;
9 const int maxm=1e3+10;
10 using namespace std;
11 int main(int argc, char const *argv[])
12 {
13 ios::sync_with_stdio(false);
14 cin.tie(0);
15 int n;
16 cin>>n;
17 ll x;
18 int res=0;
19 ll ans;
20 int i;
21 for(i=0;i<n;i++)
22 {
23 cin>>x;
24 if(!res)
25 ans=x;
26 if(x==ans)
27 res++;
28 if(x!=ans)
29 res--;
30 }
31 cout<<ans<<endl;
32 return 0;
33 }

洛谷 P2397:yyy loves Maths VI (mode)(摩尔投票算法)的更多相关文章

  1. 洛谷P2397 yyy loves Maths VI (mode)

    P2397 yyy loves Maths VI (mode) 题目背景 自动上次redbag用加法好好的刁难过了yyy同学以后,yyy十分愤怒.他还击给了redbag一题,但是这题他惊讶的发现自己居 ...

  2. [洛谷2397]yyy loves Maths VI

    题目背景 自动上次redbag用加法好好的刁难过了yyy同学以后,yyy十分愤怒.他还击给了redbag一题,但是这题他惊讶的发现自己居然也不会,所以只好找你 题目描述 他让redbag找众数他还特意 ...

  3. bzoj2456 / P2397 yyy loves Maths VI (mode)

    P2397 yyy loves Maths VI (mode) 神奇的摩尔投票法(大雾) 保证众数个数大于一半. 两两相消,剩下的那个必定是众数. 我们只要开2个变量,一个存个数,一个存值即可. (l ...

  4. 洛谷P2396 yyy loves Maths VII

    P2396 yyy loves Maths VII 题目背景 yyy对某些数字有着情有独钟的喜爱,他叫他们为幸运数字;然而他作死太多,所以把自己讨厌的数字成为"厄运数字" 题目描述 ...

  5. 洛谷——P2393 yyy loves Maths II

    P2393 yyy loves Maths II 题目背景 上次蒟蒻redbag可把yyy气坏了,yyy说他只是小学生,蒟蒻redbag这次不坑他了. 题目描述 redbag给了yyy很多个数,要yy ...

  6. 洛谷 P2393 yyy loves Maths II

    P2393 yyy loves Maths II 题目背景 上次蒟蒻redbag可把yyy气坏了,yyy说他只是小学生,蒟蒻redbag这次不坑他了. 题目描述 redbag给了yyy很多个数,要yy ...

  7. [CF327E]Axis Walking([洛谷P2396]yyy loves Maths VII)

    题目大意:给一个长度为$n(1\leqslant n\leqslant24)$的序列$S$和$k(0\leqslant k\leqslant2)$个数. 求有多少种$S$的排列方式使得其任何一个前缀和 ...

  8. 【luogu P2397 yyy loves Maths VI (mode) 】 题解

    题目链接:https://www.luogu.org/problemnew/show/P2397 卡空间. 对于众数出现次数 > n/2 我们考虑rand. 每次正确的概率为1/2,五个测试点, ...

  9. [P2397] yyy loves Maths VI (mode)

    Link: P2397 传送门 Solution: (1)在这里记录一个小小的黑科技:摩尔投票法 (线性时间复杂度,$O(1)$的空间复杂度求众数) 从数组的第一个元素开始,假定它代表的群体的人数是最 ...

  10. Luogu P2397 yyy loves Maths VI (mode)

    题目传送门 虽然只是一道黄题,但还是学到了一点新知识-- 摩尔投票法 用\(O(1)\)的内存,\(O(n)\)的时间来找出一串长度为n的数中的众数,前提是众数出现的次数要大于\(n/2\) 方法很简 ...

随机推荐

  1. javaSE高级篇5 — java8新特性详解———更新完毕

    java8新特性 在前面已经见过一些东西了,但是:挖得有坑儿 1.lambda表达式 lambda表达式是jdk1.8引入的全新语法特性 它支持的是:只有单个抽象方法的函数式接口.什么意思? 就是说: ...

  2. addict, address, adequate.四级

    addict addiction – a biopsychosocial [生物社会心理学的 bio-psycho-social] disorder characterized by persiste ...

  3. volatile原理和应用场景

    volatile是java语言中的一个关键字,常用于并发编程,有两个重要的特点:具有可见性,java虚拟机实现会为其满足Happens before原则;不具备原子性.用法是修饰变量,如:volati ...

  4. Set、Map、WeakSet 和 WeakMap 的区别

    先总结: Set1.  成员不能重复2. 只有健值,没有健名,有点类似数组.3. 可以遍历,方法有add, delete,hasweakSet 1. 成员都是对象 2. 成员都是弱引用,随时可以消失. ...

  5. JAVA中的六种日期类型使用

    基本的6种日期类 /** * 六种时间类型的类 * 数据库格式的时间三种格式 */ java.util.Date date = new java.util.Date();//年与日时分秒 //数据库的 ...

  6. ORACLE 本session产生的redo

    select * from v$statname a ,v$mystat bwhere a.STATISTIC# = b.STATISTIC# and a.name = 'redo size';

  7. Hibernate 错误的问题

    配了好几次的Hibernate,老是在create BeanFactory的时候fail.我是用MyEclipse自带的HIbernate,直接加进去的. private static final T ...

  8. OSGI与Spring结合开发web工程

    简介: 作为一个新的事实上的工业标准,OSGi 已经受到了广泛的关注, 其面向服务(接口)的基本思想和动态模块部署的能力, 是企业级应用长期以来一直追求的目标.Spring 是一个著名的 轻量级 J2 ...

  9. springboot项目中集成ip2region遇到的问题及终极解决办法

    1.问题回顾 按照ip2region项目的官方集成到springboot项目后,运行测试一切都ok,没有任何问题.但是当项目打成可执行的jar包后再运行,却显示找不到ip2region.db,无法找到 ...

  10. ubuntu qq/微信

    Ubuntu qq&微信安装/启动脚本. Docker 本脚本依赖Docker,需要提前安装好Docker环境.参考https://yeasy.gitbooks.io/docker_pract ...