Solution -「CF 1060F」Shrinking Tree
\(\mathcal{Description}\)
Link.
给定一棵 \(n\) 个点的树,反复随机选取一条边,合并其两端两点,新点编号在两端两点等概率选取。问每个点留到最后的概率。
\(n\le50\)。
\(\mathcal{Solution}\)
所有的操作方案数是 \((n-1)!\),我们可以按删边顺序看做一个长度为 \(n-1\) 的序列。对于每个点分别计算答案,把当前要算的点提为根(记为 \(r\)),我们只需要求出 \(r\) 在所有操作序列中存活的概率和除以 \((n-1)!\) 即可。
令 \(f(u,i)\) 为 \(r\) 已经走到 \(u\),\(u\) 子树内还剩下 \(i\) 条边没删(没加入删边序列),最终 \(u\)(即 \(r\))存活的概率和。显然答案为 \(f(r,n-1)\),边界 \(f(leaf,0)=1\)。
第一步,考虑儿子 \(v\) 与 \(u\) 合并。相当于需要考虑边 \((u,v)\) 在操作序列中的位置。粗略来说,若 \(r\) 没走到 \(u\),我们并不关心 \(u\) 号结点的生死;而 \(r\) 到 \(u\) 后,\(u\) 就必须存活。
定义辅助状态 \(g(u,i)\) 表示 \(u\) 子树内以及 \(u\) 的父边还剩下 \(i\) 条边没删,最终 \(u\) 存活的概率和。现在我们要计算 \(g(u,i)\)。
第一类,\((u,v)\) 保留到 \(r\) 到达 \(u\) 后再删,那么就涉及到 \(u\) 点存活的概率。于是有转移:
\]
第二类,\((u,v)\) 在 \(r\) 到达 \(u\) 之前就删,那就很随意啦—— \(v\) 子树中已删除了 \(siz_v-1-i\) 条边,我们把 \((u,v)\) 随便插进一个位置就好,即:
\]
上两类转移贡献之和即为最终的 \(g(u,i)\)。
考虑合并,始终记住删除的“序列意义”——保留的边(状态第二维)在删边序列的右端,其它的边在删边序列的左端。合并两个删边序列,仍需要保证这一点,那么分别用组合数合并已删除的左端序列和待删除的右端序列即可。下是 @ywy_c_asm 博客的一张图 owo(红色已删除,蓝色待删除):
答案呼之欲出啦:
\]
两个组合数分别对应分配已删和待删的方案数。
最终,复杂度 \(\mathcal O(n^4)\) 解决了这道毒瘤 DP qwq。
\(\mathcal{Code}\)
#include <cstdio>
#include <cstring>
const int MAXN = 50;
int n, ecnt, head[MAXN + 5], siz[MAXN + 5];
double fac[MAXN + 5];
double f[MAXN + 5][MAXN + 5];
double g[MAXN + 5], h[MAXN + 5];
struct Edge { int to, nxt; } graph[MAXN * 2 + 5];
inline void link ( const int s, const int t ) {
graph[++ ecnt] = { t, head[s] };
head[s] = ecnt;
}
inline void init () {
fac[0] = 1;
for ( int i = 1; i <= n; ++ i ) fac[i] = fac[i - 1] * i;
}
inline double comb ( const int n, const int m ) {
return n < m ? 0 : fac[n] / fac[m] / fac[n - m];
}
inline void solve ( const int u, const int fa ) {
f[u][0] = siz[u] = 1;
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( ( v = graph[i].to ) ^ fa ) {
solve ( v, u );
for ( int j = 0; j <= siz[v]; ++ j ) {
g[j] = 0;
for ( int k = 0; k < j; ++ k ) g[j] += 0.5 * f[v][k];
g[j] += ( siz[v] - j ) * f[v][j];
}
for ( int j = 0; j <= siz[v] + siz[u]; ++ j ) h[j] = 0;
for ( int j = 0; j < siz[u]; ++ j ) {
for ( int k = 0; k <= siz[v]; ++ k ) {
h[j + k] += f[u][j] * g[k] * comb ( j + k, j )
* comb ( siz[u] + siz[v] - 1 - j - k, siz[u] - 1 - j );
}
}
siz[u] += siz[v];
for ( int j = 0; j <= siz[u]; ++ j ) f[u][j] = h[j];
}
}
}
int main () {
scanf ( "%d", &n ), init ();
for ( int i = 1, u, v; i < n; ++ i ) {
scanf ( "%d %d", &u, &v );
link ( u, v ), link ( v, u );
}
for ( int i = 1; i <= n; ++ i ) {
memset ( f, 0, sizeof f );
solve ( i, 0 );
printf ( "%.12f\n", f[i][n - 1] / fac[n - 1] );
}
return 0;
}
Solution -「CF 1060F」Shrinking Tree的更多相关文章
- Solution -「CF 1491H」Yuezheng Ling and Dynamic Tree
\(\mathcal{Description}\) Link. 做题原因:题目名. 给定一个长度 \(n-1\) 的序列 \(\{a_2,a_3,\cdots,a_n\}\),其描述了一棵 \ ...
- Solution -「CF 1375G」Tree Modification
\(\mathcal{Description}\) Link. 给定一棵 \(n\) 个结点的树,每次操作选择三个结点 \(a,b,c\),满足 \((a,b),(b,c)\in E\),并令 ...
- Solution -「CF 1342E」Placing Rooks
\(\mathcal{Description}\) Link. 在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...
- Solution -「CF 1237E」Balanced Binary Search Trees
\(\mathcal{Description}\) Link. 定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...
- Solution -「CF 494C」Helping People
\(\mathcal{Description}\) Link. 给定序列 \(\{a_n\}\) 和 \(m\) 个操作,第 \(i\) 个操作有 \(p_i\) 的概率将 \([l_i,r_ ...
- Solution -「CF 793G」Oleg and Chess
\(\mathcal{Description}\) Link. 给一个 \(n\times n\) 的棋盘,其中 \(q\) 个互不重叠的子矩阵被禁止放棋.问最多能放多少个互不能攻击的车. ...
- Solution -「CF 1622F」Quadratic Set
\(\mathscr{Description}\) Link. 求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最 ...
- Solution -「CF 923F」Public Service
\(\mathscr{Description}\) Link. 给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...
- Solution -「CF 923E」Perpetual Subtraction
\(\mathcal{Description}\) Link. 有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...
随机推荐
- java 多态 总结
1.前言 引用教科书解释: 多态是同一个行为具有多个不同表现形式或形态的能力. 多态就是同一个接口,使用不同的实例而执行不同操作. 通俗来说: 总结:多态的抽象类与接口有点相似: 父类不需要具体实现方 ...
- 重大升级!灵雀云发布全栈云原生开放平台ACP 3.0
云原生技术的发展正在改变全球软件业的格局,随着云原生技术生态体系的日趋完善,灵雀云的云原生平台也进入了成熟阶段.近日,灵雀云发布重大产品升级,推出全栈云原生开放平台ACP 3.0.作为面向企业级用户的 ...
- dubbo系列二、dubbo请求流程记录
目录 1.dubbo请求处理流程 1.1. consumer端处理流程 1.2.provider端处理流程 1.3.dubbo请求分析记录-图 泳道图 xmind图 2.dubbo请求核心说明 1.d ...
- 额外空间复杂度O(1) 的二叉树遍历 → Morris Traversal,你造吗?
开心一刻 一天,有个粉丝遇到感情方面的问题,找我出出主意 粉丝:我女朋友吧,就是先天有点病,听不到人说话,也说不了话,现在我家里人又给我介绍了一个,我该怎么办 我:这个问题很难去解释,我觉得一个人活着 ...
- rocketmq实现延迟队列(精确到秒级)
最近项目里需要在延时队列,但是开源版本rocketmq不支持任意时间延时,造成有些任务无法执行 参考了网上的不少文章,但是都么有实现,所以再开源的基础上改造了个支持任意时间延时的队列. 源码地址: h ...
- Java对象栈上分配
转自 https://blog.csdn.net/o9109003234/article/details/101365108 在学习Java的过程中,很多喜欢说new出来的对象分配一定在对上: 其实不 ...
- 搭建服务器之FTP
FTP服务器,使用软件vsftpd,服务守护进程也是vsftpd.客户端访问的话可以用浏览器或ftp命令行. 1.yum install vsftpd.安装简单主要是配置,这个比httpd复杂点的地方 ...
- Spring 官宣发布 Spring Boot 3.0 第一个里程碑 M1,从 Java 8 提升到 Java 17!
Spring官方于2022年1月20日发布Spring Boot 3.0.0-M1版本,预示开启了Spring Boot 3.0的里程碑,相信这是通往下一代Spring框架的激动人心的旅程. 接下来一 ...
- 根据SVG Arc求出其开始角、摆动角和椭圆圆心
SVG Arc 目前Svg的Arc的参数字符串如下: a rx ry x-axis-rotation large-arc-flag sweep-flag x y 除了a表示标识为Arc之外,其余参数说 ...
- 负载均衡后端状态(proxy_next_upstream 后端错误标识)
目录 一:负载均衡后端状态 二:down(无论什么情况不会分配流量) 三:backup(备用只有当所有的机器宕机(关闭)才能启动备份服务器) 四:max_fails.fail_timeout(结合使用 ...