Content

给定一个长度为 \(n\) 的数列 \(a\),请将其重新排列,使得 \(\forall i\in[1,n-1]\),都有 \(4\mid (a_i\cdot a_{i+1})\),或者报告不存在。

数据范围:\(2\leqslant n\leqslant 10^5\),\(1\leqslant a_i\leqslant 10^9\)。

Solution

简单的分类讨论题。

我们不妨在读入的时候统计出奇数的数量 \(\textit{cnt}_1\) 和 \(4\) 的倍数的数量 \(\textit{cnt}_2\),然后:

i) 当 \(\textit{cnt}_1+\textit{cnt}_2\neq n\) 时,此时除了奇数和 \(4\) 的倍数以外,还有部分不是 \(4\) 的倍数的偶数,那么它们一定只可能是 \(2\) 的倍数而不可能是 \(2^k(k\geqslant 2)\) 的倍数。因此我们在这里考虑把这些数放到后面去,前面的留给奇数和 \(4\) 的倍数,以使得相邻两个数相乘得到 \(4\) 的倍数。

那么前面的奇数和 \(4\) 的倍数怎么放呢?我们可以考虑交叉放,即先放奇数再放 \(4\) 的倍数再放奇数……或者先放 \(4\) 的倍数再放奇数再放 \(4\) 的倍数……那么最优方案下先放哪个呢?不难发现如果先放奇数的话,最坏情况下当 \(\textit{cnt}_1=\textit{cnt}_2\) 时,是可以构造出合法的排列的。否则就不行。

因此,在 i) 的情况下,只需要满足 \(\textit{cnt}_1\leqslant\textit{cnt}_2\),就能够构造出合法的排列。

ii) 当 \(\textit{cnt}_1+\textit{cnt}_2=n\) 时,此时最坏的情况无非就是 \(\textit{cnt}_1=\textit{cnt}_2+1\) 时,先全部放奇数,然后再在每两个奇数的中间放 \(4\) 的倍数,即可满足要求。

因此,在 ii) 的情况下,只需要满足 \(\textit{cnt}_1\leqslant\textit{cnt}_2+1\),就能够构造出合法的序列。

根据其实际情况分类判断一下就可以了。

Code

int n, a[100007], cntodd, cntfour;

int main() {
n = Rint;
F(int, i, 1, n) {
a[i] = Rint;
if(a[i] % 2) cntodd++;
else if(!(a[i] % 4)) cntfour++;
}
return cntodd <= cntfour || (cntodd + cntfour == n && cntodd - cntfour <= 1) ? Yes : No, 0;
}

AT2686 [ARC080A] 4-adjacent 题解的更多相关文章

  1. 算法与数据结构基础 - 图(Graph)

    图基础 图(Graph)应用广泛,程序中可用邻接表和邻接矩阵表示图.依据不同维度,图可以分为有向图/无向图.有权图/无权图.连通图/非连通图.循环图/非循环图,有向图中的顶点具有入度/出度的概念. 面 ...

  2. 2014年亚洲区域赛北京赛区现场赛A,D,H,I,K题解(hdu5112,5115,5119,5220,5122)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud 下午在HDU上打了一下今年北京区域赛的重现,过了5题,看来单挑只能拿拿铜牌,呜呜. ...

  3. POJ 3279(Fliptile)题解

    以防万一,题目原文和链接均附在文末.那么先是题目分析: [一句话题意] 给定长宽的黑白棋棋盘摆满棋子,每次操作可以反转一个位置和其上下左右共五个位置的棋子的颜色,求要使用最少翻转次数将所有棋子反转为黑 ...

  4. “玲珑杯”ACM比赛 Round #12题解&源码

    我能说我比较傻么!就只能做一道签到题,没办法,我就先写下A题的题解&源码吧,日后补上剩余题的题解&源码吧!                                     A ...

  5. usaco 2002 月赛 Fiber Communications 题解

    Description Farmer John wants to connect his N (1 <= N <= 1,000) barns (numbered 1..N) with a ...

  6. Adjacent Bit Counts(01组合数)

    Adjacent Bit Counts 4557 Adjacent Bit CountsFor a string of n bits x 1 , x 2 , x 3 ,..., x n , the a ...

  7. 题解——ATCoder AtCoder Grand Contest 017 B - Moderate Differences(数学,构造)

    题面 B - Moderate Differences Time limit : 2sec / Memory limit : 256MB Score : 400 points Problem Stat ...

  8. leetcode & lintcode 题解

    刷题备忘录,for bug-free 招行面试题--求无序数组最长连续序列的长度,这里连续指的是值连续--间隔为1,并不是数值的位置连续 问题: 给出一个未排序的整数数组,找出最长的连续元素序列的长度 ...

  9. LeetCode All in One题解汇总(持续更新中...)

    突然很想刷刷题,LeetCode是一个不错的选择,忽略了输入输出,更好的突出了算法,省去了不少时间. dalao们发现了任何错误,或是代码无法通过,或是有更好的解法,或是有任何疑问和建议的话,可以在对 ...

随机推荐

  1. TVB斜率限制器

    TVB斜率限制器 本文参考源程序来自Fluidity. 简介 TVB斜率限制器最早由Cockburn和Shu(1989)提出,主要特点是提出了修正minmod函数 \[\tilde{m}(a_1, a ...

  2. 【GS文献】植物全基因组选择育种技术原理与研究进展

    目录 1. 优势杂交育种预测 2. GS育种原理与模型算法 岭回归和LASSO回归 贝叶斯方法 GBLUP和RRBLUP 偏最小二乘法 支持向量机/支持向量回归 其他方法 3. 模型预测能力验证 4. ...

  3. SNP 过滤(一)

    通用过滤 Vcftools(http://vcftools.sourceforge.net) 对vcf文件进行过滤 第一步:过滤最低质量低于30,次等位基因深度(minor allele count) ...

  4. c6和c7

    Centos6.x普遍采用 ext3\ext4(Fourth EXtended filesystem)文件系统格式, EXT3 支持的最大 16TB 文件系统和最大 2TB 文件 Ext4 分别支持1 ...

  5. CSS浮动效果

    #div1{ background-color: yellow; width: 150px; height:150px; position: absolute; top:150px; left: 15 ...

  6. 突破冯·诺依曼架构瓶颈!全球首款存算一体AI芯片诞生

    过去70年,计算机一直遵循冯·诺依曼架构设计,运行时数据需要在处理器和内存之间来回传输. 随着时代发展,这一工作模式面临较大挑战:在人工智能等高并发计算场景中,数据来回传输会产生巨大的功耗:目前内存系 ...

  7. midi的一些概念,包括一些音乐的概念

    参考:http://www.yueqixuexi.com/jita/20180918205363.html https://blog.csdn.net/meicheng777/article/deta ...

  8. C++之error: cannot bind non-const lvalue reference of type ‘myString&’ to an rvalue of type ‘myString’

    先看代码(不想看代码可以直接看代码后的问题描述) //header.h #ifndef _HEADER_H #define _HEADER_H #define defaultSize 128 #inc ...

  9. vim编码设置(转)

    vim里面的编码主要跟三个参数有关:enc(encoding).fenc(fileencoding).fence(fileencodings) fenc是当前文件的编码,也就是说,一个在vim里面已经 ...

  10. OpenStack之七: compute服务(端口8774)

    注意此处的bug,参考o版 官网地址 https://docs.openstack.org/nova/stein/install/controller-install-rdo.html 控制端配置 # ...