Content

给定一个长度 \(n\) 的只包含小写字母和 \(0\sim9\) 的字符串(字符串中的字母可视为分隔符)。求字符串中包含多少个不同的数字。

数据范围:\(1\leqslant n\leqslant 100\),保证每个数字最多有 \(3\) 位。

Solution

分两步即可:

  • 读入字符串并提取出所有的数字。
  • 统计不同的数字个数。

具体看代码实现。

Code

string s;
int num[107], x = -1, cnt, ans, vis[1007]; int main() {
cin >> s; int len = s.size();
F(i, 0, len - 1) {
if(!isdigit(s[i]) && x != -1) num[++cnt] = x, x = -1;
else if(isdigit(s[i])) {
if(x == -1) x = 0;
x = x * 10 + s[i] - '0';
}
}
if(x != -1) num[++cnt] = x;
F(i, 1, cnt) if(!vis[num[i]]) vis[num[i]] = 1, ans++;
return printf("%d", ans), 0;
}

LuoguP7398 [COCI2020-2021#5] Šifra 题解的更多相关文章

  1. 2021.07.17 题解 CF1385E Directing Edges(拓扑排序)

    2021.07.17 题解 CF1385E Directing Edges(拓扑排序) CF1385E Directing Edges - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) ...

  2. NOI 2021 部分题目题解

    最近几天复盘了一下NOI 2021,愈发发觉自己的愚蠢,可惜D2T3仍是不会,于是只写前面的题解 Day1 T1 可以发现,每次相当于将 \(x\to y\) 染上一种全新颜色,然后一条边是重边当且仅 ...

  3. IMO 2021 第一题题解及相关拓展问题分析

    IMO 2021 第 1 题: 设整数 n ≥ 100.伊凡把 n, n + 1, ..., 2n 的每个数写在不同的卡片上.然后他将这 n + 1 张卡片打乱顺序并分成两堆.证明:至少有一堆中包含两 ...

  4. [NOI 2021] 轻重边 题解

    提供一种和不太一样的树剖解法(一下考场就会做了qwq),尽量详细讲解. 思路 设重边为黑色,轻边为白色. 首先,先将边的染色转化为点的染色(即将 \(u\) 节点连向父节点的边的颜色转化为 \(u\) ...

  5. LuoguP7911 [CSP-J 2021] 网络连接 题解

    Content 题目过于难解释,请前往题面查看.以下直接给出本题做法. Solution 入门组 T3 在我印象中向来都不是很容易能做出来的题目,但是今年这个 T3 不得不说还是挺好做的. 我们先不妨 ...

  6. IMO 2021 第 1 题拓展问题的两个极值的编程求解

    IMO 2021 第 1 题拓展问题的两个极值的编程求解 本篇是 IMO 2021 第一题题解及相关拓展问题分析 的续篇. 拓展问题三: (I). 求 n 的最小值,使得 n, n + 1, ..., ...

  7. n, n+1, ..., 2n 中的 5 数环初探

    本篇是 IMO 2021 第一题题解及相关拓展问题分析 和 IMO 2021 第 1 题拓展问题的两个极值的编程求解 的延伸篇. 从上两篇的分析,可知: 当 n < 48 时,n, n+1, . ...

  8. KYOCERA Programming Contest 2021(AtCoder Beginner Contest 200) 题解

    KYOCERA Programming Contest 2021(AtCoder Beginner Contest 200) 题解 哦淦我已经菜到被ABC吊打了. A - Century 首先把当前年 ...

  9. 2021.07.02 P1383 高级打字机题解(可持久化平衡树)

    2021.07.02 P1383 高级打字机题解(可持久化平衡树) 分析: 从可以不断撤销并且查询不算撤销这一骚操作可以肯定这是要咱建一棵可持久化的树(我也只会建可持久化的树,当然,还有可持久化并查集 ...

随机推荐

  1. 理解ASP.NET Core - 过滤器(Filters)

    注:本文隶属于<理解ASP.NET Core>系列文章,请查看置顶博客或点击此处查看全文目录 Filter概览 如果你是从ASP.NET一路走过来的,那么你一定对过滤器(Filter)不陌 ...

  2. 洛谷 P5391 - [Cnoi2019]青染之心

    洛谷题面传送门 介绍一种假做法,期望复杂度应该比较优秀,但可以卡掉( 首先这个问题显然严格强于只有添加元素的情况对吧,而只有添加元素的情况就是一个普通的背包,而只有插入操作的版本复杂度就已经达到了 \ ...

  3. 题解 P5320 - [BJOI2019]勘破神机(推式子+第一类斯特林数)

    洛谷题面传送门 神仙题(为什么就没能自己想出来呢/zk/zk) 这是我 AC 的第 \(2\times 10^3\) 道题哦 首先考虑 \(m=2\) 的情况,我们首先可以想到一个非常 trivial ...

  4. Codeforces 1097G - Vladislav and a Great Legend(第二类斯特林数+树上背包)

    Codeforces 题目传送门 & 洛谷题目传送门 首先看到这题我的第一反应是:这题跟这题长得好像,不管三七二十一先把 \(k\) 次方展开成斯特林数的形式,\(f(X)^k=\sum\li ...

  5. 洛谷 P7324 - [WC2021] 表达式求值(状压+dp)

    题面传送门 现场人傻系列-- 首先建出 \(E\) 的表达式树,具体来说表达式的每一个叶子节点表示一个数组 \(A_i\),每一个非叶子节点都表示一次运算,它的值表示左右儿子进行该运算后得到的结果.这 ...

  6. SAM 感性瞎扯

    SAM 做题笔记. 这里是 SAM 感性瞎扯. 最近学了后缀自动机(Suffix_Automaton,SAM),深感其巧妙之处,故写文以记之. 部分文字与图片来源于 OI-Wiki,hihoCoder ...

  7. Linux环境下R和R包安装及其管理

    前言 R对windows使用很友好,对Linux来说充满了敌意.小数据可以在windows下交互操作,效果很好很棒.可是当我们要处理大数据,或者要在集群上搭建pipeline时,不得不面对在Linux ...

  8. Python os模块与sys模块

    1.os模块简单使用及说明 # -*- coding:utf-8 -*- """ os模块主要用于系统,处理程序与系统交互问题 大部分如属性等功能在linux系统中会使用 ...

  9. (转载)Java生成和操作Excel文件

    JAVA EXCEL API:是一开放源码项目,通过它Java开发人员可以读取Excel文件的内容.创建新的Excel文件.更新已经存在的Excel文件.使用该API非Windows操作系统也可以通过 ...

  10. 02 eclipse中配置Web项目(含eclipse基本配置和Tomcat的配置)

    eclipse搭建web项目 一.Eclipse基本配置 找到首选项: (一)配置编码 (二)配置字体 (三)配置jdk (四)配置Tomcat 二.Tomcat配置 三.切换视图,检查Tomcat ...