为什么CTR预估使用AUC来评估模型?
ctr预估简单的解释就是预测用户的点击item的概率。为什么一个回归的问题需要使用分类的方法来评估,这真是一个好问题,尝试从下面几个关键问题去回答。
1、ctr预估是特殊的回归问题
ctr预估的目标函数为
f(x)=P(+1|x)
特殊之处在于目标函数的值域为[0,1],而且由于是条件概率,具有如下特性

如果将ctr预估按照一般的回归问题处理(如使用Linear Regression),面临的问题是一般的linear regression的值域范围是实数域,对于整个实数域的敏感程度是相同的,所以直接使用一般的linear regression来建立ctr预估模型很容易受到noise的影响。以Andrew Ng课程中的例子图1.b所示,增加一个噪音点后,拟合的直线马上偏移。另外,由于目标函数是条件概率,训练样本中会存在特征x完全相同,y为+1和-1的样本都出现的问题,在linear regression看来是一个矛盾的问题,而Logistics Regression很好的解决了这个问题[1]。

2、LR模型的cost function不使用平方差
一般回归问题采用的cost function是预测值和实际值的平方差,而LR模型无法采用平方差作为cost function的原因是由于基于LR模型公式的平方差函数是非凸函数,无法方便的获得全局最优解。
LR模型采用的cost function是采用cross-entropy error function(也有叫做对数似然函数的),error measure是模型假设h产生训练样本D的可能性(likelihood)[2]。
假设y1=+1, y2=-1, ......., yn=-1,对应的likelihood为:


3、为什么AUC也可以用于LR模型的评估
普遍上对于AUC的认识是在分类问题中,取不同的threshold后,在横坐标false positive rate,纵坐标为true positive rate平面上绘制ROC曲线的曲线下面积,所以很难理解是如何与这里的回归问题联系起来。实际上,一个关于AUC的很有趣的性质是:它和Wilcoxon-Mann-Witney Test是等价的[3]。而Wilcoxon-Mann-Witney Test就是测试任意给一个正类样本和一个负类样本,正类样本的score有多大的概率大于负类样本的score。有了这个定义,我们就得到了另外一种计算AUC的方法:具体来说就算统计一下所有M*N(M为正类样本的数目,N为负类样本的数目)个正负样本对中,有多少个组中的正样本的score大于负样本的score。

参考文献
[1]逻辑回归模型(Logistic Regression, LR)基础。 http://www.cnblogs.com/sparkwen/p/3441197.html
[2] Machine Learning Foundation, Coursera.
[3]AUC(Area Under roc Curve )计算及其与ROC的关系 http://www.cnblogs.com/guolei/archive/2013/05/23/3095747.html
原文连接:
为什么CTR预估使用AUC来评估模型?的更多相关文章
- 计算广告CTR预估系列(七)--Facebook经典模型LR+GBDT理论与实践
计算广告CTR预估系列(七)--Facebook经典模型LR+GBDT理论与实践 2018年06月13日 16:38:11 轻春 阅读数 6004更多 分类专栏: 机器学习 机器学习荐货情报局 版 ...
- Spark Mllib里决策树二元分类使用.areaUnderROC方法计算出以AUC来评估模型的准确率和决策树多元分类使用.precision方法以precision来评估模型的准确率(图文详解)
不多说,直接上干货! Spark Mllib里决策树二元分类使用.areaUnderROC方法计算出以AUC来评估模型的准确率 具体,见 Hadoop+Spark大数据巨量分析与机器学习整合开发实战的 ...
- 召回率、AUC、ROC模型评估指标精要
混淆矩阵 精准率/查准率,presicion 预测为正的样本中实际为正的概率 召回率/查全率,recall 实际为正的样本中被预测为正的概率 TPR F1分数,同时考虑查准率和查全率,二者达到平衡,= ...
- Kaggle : Display Advertising Challenge( ctr 预估 )
原文:http://blog.csdn.net/hero_fantao/article/details/42747281 Display Advertising Challenge --------- ...
- 广告点击率 CTR预估中GBDT与LR融合方案
http://www.cbdio.com/BigData/2015-08/27/content_3750170.htm 1.背景 CTR预估,广告点击率(Click-Through Rate Pred ...
- CTR预估中GBDT与LR融合方案(转载)
1.背景 CTR预估,广告点击率(Click-Through Rate Prediction)是互联网计算广告中的关键环节,预估准确性直接影响公司广告收入.CTR预估中用的最多的模型是LR(Logis ...
- CTR预估中GBDT与LR融合方案
1. 背景 CTR预估(Click-Through Rate Prediction)是互联网计算广告中的关键环节,预估准确性直接影响公司广告收入.CTR预估中用的最多的模型是LR(Logistic R ...
- Spark Mllib里决策树回归分析使用.rootMeanSquaredError方法计算出以RMSE来评估模型的准确率(图文详解)
不多说,直接上干货! Spark Mllib里决策树二元分类使用.areaUnderROC方法计算出以AUC来评估模型的准确率和决策树多元分类使用.precision方法以precision来评估模型 ...
- CTR预估之LR与GBDT融合
转载自:http://www.cbdio.com/BigData/2015-08/27/content_3750170.htm 1.背景 CTR预估,广告点击率(Click-Through Rate ...
随机推荐
- Django settings.py设置 DEBUG=False后静态文件无法加载解决
解决办法: settings.py 文件 DEBUG = False STATIC_ROOT = os.path.join(BASE_DIR,'static') #新增 urls.py文件(项目的) ...
- QuantumTunnel:内网穿透服务设计
背景 最近工作中有公网访问内网服务的需求,便了解了内网穿透相关的知识.发现原理和实现都不复杂,遂产生了设计一个内网穿透的想法. 名字想好了,就叫QuantumTunnel,量子隧道,名字来源于量子纠缠 ...
- 攻防世界 Misc 新手练习区 坚持60s Writeup
攻防世界 Misc 新手练习区 坚持60s Writeup 题目介绍 题目考点 java反编译 jd-gui 的使用 Writeup 下载附件并打开 kali执行命令 java -jar 9dc125 ...
- java中使用Process执行linux命令
代码如下 BufferedReader reader = null; String cmd = "netstat -anp|grep :8080";//命令中有管道符 | 需要如下 ...
- mysql 禁止外键检查
SET FOREIGN_KEY_CHECKS=0; SET FOREIGN_KEY_CHECKS=1; from: https://stackoverflow.com/a/15501754/80250 ...
- c++学习笔记3(动态内存分配)
为了效率,需要按需去进行动态内存分配,在c中,可以用malloc去实现动态内存分配,而在c++中,则用new运算符去实现. 用法一:动态分配一个变量的存储空间 p=new T T为类型名 P则为T*类 ...
- Qt概要
Qt是面向对象的框架,使用特殊的代码生成扩展以及一些宏.是一个跨平台的C++图形用户界面.它是一款可以轻松的帮我们做界面的软件. Qt是1991年奇趣科技公司(2008 年 6 月被诺基亚收购)开发的 ...
- Typora下载安装教程
Typoa下载和安装 Typora---程序员记事本!!! 这里我们选择Typora作为我们的编辑器,功能的强大需要各位自己去体会. Typora下载地址 点击链接打开,然后选择Download! 根 ...
- Mybatis动态传入tableName--非预编译(STATEMENT)
在使用Mybatis过程中,你可以体会到它的强大与灵活之处,由衷的为Mybatis之父点上999个赞!在使用过程中经常会遇到这样一种情况,我查询数据的时候,表名称是动态的从程序中传入的,比如我们通过m ...
- 【华为昇腾】 序言:从昇腾AI软硬件平台聊起
2021年是很值得纪念的一年,从上半年开始跟随导师编写有关华为昇腾软件栈CANN的教材,一年的时间反复迭代 终于快要出版了. 这一系列博客可以视作我从编者的角度,重新梳理的全书思路.明年入职商汤之后要 ...