为什么CTR预估使用AUC来评估模型?
ctr预估简单的解释就是预测用户的点击item的概率。为什么一个回归的问题需要使用分类的方法来评估,这真是一个好问题,尝试从下面几个关键问题去回答。
1、ctr预估是特殊的回归问题
ctr预估的目标函数为
f(x)=P(+1|x)
特殊之处在于目标函数的值域为[0,1],而且由于是条件概率,具有如下特性
如果将ctr预估按照一般的回归问题处理(如使用Linear Regression),面临的问题是一般的linear regression的值域范围是实数域,对于整个实数域的敏感程度是相同的,所以直接使用一般的linear regression来建立ctr预估模型很容易受到noise的影响。以Andrew Ng课程中的例子图1.b所示,增加一个噪音点后,拟合的直线马上偏移。另外,由于目标函数是条件概率,训练样本中会存在特征x完全相同,y为+1和-1的样本都出现的问题,在linear regression看来是一个矛盾的问题,而Logistics Regression很好的解决了这个问题[1]。
2、LR模型的cost function不使用平方差
一般回归问题采用的cost function是预测值和实际值的平方差,而LR模型无法采用平方差作为cost function的原因是由于基于LR模型公式的平方差函数是非凸函数,无法方便的获得全局最优解。
LR模型采用的cost function是采用cross-entropy error function(也有叫做对数似然函数的),error measure是模型假设h产生训练样本D的可能性(likelihood)[2]。
假设y1=+1, y2=-1, ......., yn=-1,对应的likelihood为:
3、为什么AUC也可以用于LR模型的评估
普遍上对于AUC的认识是在分类问题中,取不同的threshold后,在横坐标false positive rate,纵坐标为true positive rate平面上绘制ROC曲线的曲线下面积,所以很难理解是如何与这里的回归问题联系起来。实际上,一个关于AUC的很有趣的性质是:它和Wilcoxon-Mann-Witney Test是等价的[3]。而Wilcoxon-Mann-Witney Test就是测试任意给一个正类样本和一个负类样本,正类样本的score有多大的概率大于负类样本的score。有了这个定义,我们就得到了另外一种计算AUC的方法:具体来说就算统计一下所有M*N(M为正类样本的数目,N为负类样本的数目)个正负样本对中,有多少个组中的正样本的score大于负样本的score。
参考文献
[1]逻辑回归模型(Logistic Regression, LR)基础。 http://www.cnblogs.com/sparkwen/p/3441197.html
[2] Machine Learning Foundation, Coursera.
[3]AUC(Area Under roc Curve )计算及其与ROC的关系 http://www.cnblogs.com/guolei/archive/2013/05/23/3095747.html
原文连接:
为什么CTR预估使用AUC来评估模型?的更多相关文章
- 计算广告CTR预估系列(七)--Facebook经典模型LR+GBDT理论与实践
计算广告CTR预估系列(七)--Facebook经典模型LR+GBDT理论与实践 2018年06月13日 16:38:11 轻春 阅读数 6004更多 分类专栏: 机器学习 机器学习荐货情报局 版 ...
- Spark Mllib里决策树二元分类使用.areaUnderROC方法计算出以AUC来评估模型的准确率和决策树多元分类使用.precision方法以precision来评估模型的准确率(图文详解)
不多说,直接上干货! Spark Mllib里决策树二元分类使用.areaUnderROC方法计算出以AUC来评估模型的准确率 具体,见 Hadoop+Spark大数据巨量分析与机器学习整合开发实战的 ...
- 召回率、AUC、ROC模型评估指标精要
混淆矩阵 精准率/查准率,presicion 预测为正的样本中实际为正的概率 召回率/查全率,recall 实际为正的样本中被预测为正的概率 TPR F1分数,同时考虑查准率和查全率,二者达到平衡,= ...
- Kaggle : Display Advertising Challenge( ctr 预估 )
原文:http://blog.csdn.net/hero_fantao/article/details/42747281 Display Advertising Challenge --------- ...
- 广告点击率 CTR预估中GBDT与LR融合方案
http://www.cbdio.com/BigData/2015-08/27/content_3750170.htm 1.背景 CTR预估,广告点击率(Click-Through Rate Pred ...
- CTR预估中GBDT与LR融合方案(转载)
1.背景 CTR预估,广告点击率(Click-Through Rate Prediction)是互联网计算广告中的关键环节,预估准确性直接影响公司广告收入.CTR预估中用的最多的模型是LR(Logis ...
- CTR预估中GBDT与LR融合方案
1. 背景 CTR预估(Click-Through Rate Prediction)是互联网计算广告中的关键环节,预估准确性直接影响公司广告收入.CTR预估中用的最多的模型是LR(Logistic R ...
- Spark Mllib里决策树回归分析使用.rootMeanSquaredError方法计算出以RMSE来评估模型的准确率(图文详解)
不多说,直接上干货! Spark Mllib里决策树二元分类使用.areaUnderROC方法计算出以AUC来评估模型的准确率和决策树多元分类使用.precision方法以precision来评估模型 ...
- CTR预估之LR与GBDT融合
转载自:http://www.cbdio.com/BigData/2015-08/27/content_3750170.htm 1.背景 CTR预估,广告点击率(Click-Through Rate ...
随机推荐
- 服务端渲染技术NUXT
什么是服务端渲染 服务端渲染又称SSR (Server Side Render),是在服务端完成页面的内容,而不是在客户端通过AJAX获取数据. 服务器端渲染(SSR)的优势主要在于:更好的 SE ...
- Python推导式详解,带你写出比较精简酷炫的代码
Python推导式详解,带你写出比较精简酷炫的代码 前言 1.推导式分类与用法 1.1 列表推导 1.2 集合推导 1.3 字典推导 1.4 元组推导?不存在的 2.推导式的性能 2.1 列表推导式与 ...
- Netty数据如何在 pipeline 中流动
前言 在之前文章中,我们已经了解了pipeline在netty中所处的角色,像是一条流水线,控制着字节流的读写,本文,我们在这个基础上继续深挖pipeline在事件传播 Unsafe对象 顾名思义,u ...
- 利用DNS缓存和TLS协议将受限SSRF变为通用SSRF
本文首发于先知社区 前言 这是今年BlackHat上的一个议题:When TLS Hacks You,作者是latacora的Joshua Maddux 议题提出了一个新的ssrf攻击思路,利用DNS ...
- .net C# 释放内存 例子
namespace myCommon{ public class SysVar { [DllImport("kernel32.dll")] public ...
- [atAGC054E]ZigZag Break
结论:(不妨假设$p_{1}<p_{n}$)$\{p_{i}\}$合法当且仅当$\exists 1\le i\le n-1$,使得$p_{1}\ge p_{i}$且$p_{i+1}\ge p_{ ...
- [loj3340]命运
容斥,强制若干条链不重要,即有$2^{n-1-s}$种(其中$s$为这些链的并所覆盖的边数),暴力将选中的链打标记,时间复杂度$o(m^{2}2^{m}+n\log_{2}n)$(预处理出这$2m$个 ...
- 异常处理截止和UML图
0.异常处理机制 0.1.java中异常的作用是:增强程序健壮性. 0.2.java中异常以类和对象的形式存在. 1.java的异常处理机制 1.1.异常在java中以类和对象的形式存在.那么异常的继 ...
- vue的常用指令
https://www.bootcdn.cn/ 前端资源库 <!-- 常用内置指令 v:text : 更新元素的 textContent v-html : 更新元素的 innerHTML v-i ...
- 日程功能模块【从建模到代码实现】UML + JavaFX
结合 uml 所学和 Javafx 从建模到实现一个子功能模块 -- 日程管理.新手上路,类图到代码实现的过程还是很曲折但所幸收获颇丰,记录一下学习心得. 日程功能模块 最后成果 JAVAFX里面没有 ...