混淆矩阵
精准率/查准率,presicion 预测为正的样本中实际为正的概率
召回率/查全率,recall 实际为正的样本中被预测为正的概率 TPR
F1分数,同时考虑查准率和查全率,二者达到平衡,=2*查准率*查全率/(查准率+查全率)
真正率 = 灵敏度 sensitivity 召回率 TP/TP+FN ,只关注正样本中有多少被准确预测
假正率 = 1- 特异度 = FP/(FP+TN),有多少负样本被错误预测
 
在正负样本足够的情况下,可以用ROC曲线、AUC、KS评价模型区分能力和排序能力,在确定阈值后,可以根据精准率、召回率、F1评价模型效果
KS反映模型的最优区分效果,定义为好坏的最优阈值。
 
 
 
AUC是评估模型排序能力的指标,logloss是评估准确度的指标,用来排序的依据是概率值
auc值是一个概率值,意味着正样本排在负样本前面的概率
 
roc,auc,ks评估模型,这几个指标对于比例失衡的数据 是相对比较客观的评估指标。
  • roc 曲线
横坐标是假正率,纵坐标是真正率.roc曲线尽可能的靠近左上边(0,1)的位置,效果越好
(0,0):真正率和假正率都是0,所有样本全部预测为负样本
(1,1):真正率和假正率都是1,所有样本全部预测为正样本
(0,1):真正率为1,假正率为0,正样本全部预测正确,负样本全部预测正确最完美的
情况
(1,0):真正率为0,假正率为1,正样本全部预测错误,负样本全部预测正确
confusion matrix
roc_curve
  • AUC曲线
ROC曲线下的面积,常介于0.5和1之间(极端情况下低于0.5),可以直观的评价分类器的好
坏,值越大越好。
AUC值是一个概率值,当你随机挑选一个坏样本以及好样本,当前的分类算法根据计算得
到的概率值将这个
坏样本排在好样本前面的概率就是AUC值,AUC值越大,当前分类算法越有可能将坏样本
排在好样本前面,从而能够更好地分类。
AUC的常用阈值 >0.7;有很强的区分度 0.6~0.7;有一定的区分度 0.5~0.6,有较弱的区分度;
低于0.5,区分度弱于随机猜测
  • KS曲线
ks值大于0.3说明模型的区分里比较好,ks值大于0.2模型可用,但是区分力较差;ks值小 于0.2大于0,模型的区分力差不可用; 如果ks值为负数,说明评分与好坏程度相悖,模型出现错误。ks指标的缺点是:只能表示 区分度最好的分数的区分度,不能衡量其他分数。
 

召回率、AUC、ROC模型评估指标精要的更多相关文章

  1. 混淆矩阵、准确率、召回率、ROC曲线、AUC

    混淆矩阵.准确率.召回率.ROC曲线.AUC 假设有一个用来对猫(cats).狗(dogs).兔子(rabbits)进行分类的系统,混淆矩阵就是为了进一步分析性能而对该算法测试结果做出的总结.假设总共 ...

  2. [机器学习] 性能评估指标(精确率、召回率、ROC、AUC)

    混淆矩阵 介绍这些概念之前先来介绍一个概念:混淆矩阵(confusion matrix).对于 k 元分类,其实它就是一个k x k的表格,用来记录分类器的预测结果.对于常见的二元分类,它的混淆矩阵是 ...

  3. 【机器学习】--模型评估指标之混淆矩阵,ROC曲线和AUC面积

    一.前述 怎么样对训练出来的模型进行评估是有一定指标的,本文就相关指标做一个总结. 二.具体 1.混淆矩阵 混淆矩阵如图:  第一个参数true,false是指预测的正确性.  第二个参数true,p ...

  4. 基于sklearn的metrics库的常用有监督模型评估指标学习

    一.分类评估指标 准确率(最直白的指标)缺点:受采样影响极大,比如100个样本中有99个为正例,所以即使模型很无脑地预测全部样本为正例,依然有99%的正确率适用范围:二分类(准确率):二分类.多分类( ...

  5. 精确率与召回率,RoC曲线与PR曲线

    在机器学习的算法评估中,尤其是分类算法评估中,我们经常听到精确率(precision)与召回率(recall),RoC曲线与PR曲线这些概念,那这些概念到底有什么用处呢? 首先,我们需要搞清楚几个拗口 ...

  6. 【Model Log】模型评估指标可视化,自动画Loss、Accuracy曲线图工具,无需人工参与!

    1. Model Log 介绍 Model Log 是一款基于 Python3 的轻量级机器学习(Machine Learning).深度学习(Deep Learning)模型训练评估指标可视化工具, ...

  7. 机器学习性能评估指标(精确率、召回率、ROC、AUC)

    http://blog.csdn.net/u012089317/article/details/52156514 ,y^)=1nsamples∑i=1nsamples(yi−y^i)2

  8. Python机器学习笔记:常用评估指标的用法

    在机器学习中,性能指标(Metrics)是衡量一个模型好坏的关键,通过衡量模型输出y_predict和y_true之间的某种“距离”得出的. 对学习器的泛化性能进行评估,不仅需要有效可行的试验估计方法 ...

  9. Spark ML机器学习库评估指标示例

    本文主要对 Spark ML库下模型评估指标的讲解,以下代码均以Jupyter Notebook进行讲解,Spark版本为2.4.5.模型评估指标位于包org.apache.spark.ml.eval ...

随机推荐

  1. SQL查询条件生成小工具

    最近运维数据,经常遇到需要在sql条件中个In('',''....)个字符串的情况,于是在网上找了个小工具改造一下,先用着: 效果如图: using System; using System.Coll ...

  2. Cas简介(一)

    Cas的全称是Centeral Authentication Service,是对单点登录SSO(Single Sign On)的一种实现.其由Cas Server和Cas Client两部分组成,C ...

  3. Java 多态基础

    多态的定义 程序中定义的引用变量所指向的具体类型和通过该引用变量发出的方法调用在编程时并不确定,而是在运行期间才确定. 或者是同一个行为具有多个不同表现形式或形态的能力. 多态的体现 在玩LOL时,W ...

  4. CSV模块的使用

    1.csv简介 CSV (Comma Separated Values),即逗号分隔值(也称字符分隔值,因为分隔符可以不是逗号),是一种常用的文本 格式,用以存储表格数据,包括数字或者字符.很多程序在 ...

  5. nodejs 模板引擎ejs的简单使用

    ejs1.js /** * Created by ZXW on 2017/11/9. */ var ejs=require('ejs'); ejs.renderFile("},functio ...

  6. CSIC_716_20191225【HTML基础入门】

    HTTP协议 超文本传输协议HyperText Transfer Protocol 四大特性: 1.一次请求一次响应 2.基于TCP/IP协议,作用于应用层 3.无状态 4.无连接 数据格式: 1.请 ...

  7. leetcode-163周赛-1261-在污染的二叉树中查找元素

    题目描述: 方法一: class FindElements: def __init__(self, root: TreeNode): self.d = set() def f(r, x): if r: ...

  8. leetcood学习笔记-14*-最长公共前缀

    笔记: python if not   判断是否为None的情况 if not x if x is None if not x is None if x is not None`是最好的写法,清晰,不 ...

  9. 利用SparkSQL(java版)将离线数据或实时流数据写入hive的用法及坑点

    1. 通常利用SparkSQL将离线或实时流数据的SparkRDD数据写入Hive,一般有两种方法.第一种是利用org.apache.spark.sql.types.StructType和org.ap ...

  10. SQL 循环语句几种写法

    1.正常循环语句 declare @orderNum varchar(255)create table #ttableName(id int identity(1,1),Orders varchar( ...