Gradient descent

Batch Gradient Decent, Mini-batch gradient descent, Stochastic gradient descent

  

  

  

还有很多比gradient decent 更优化的算法,在了解这些算法前,需要先理解  Exponentially weighted averages 这个概念

Exponentially weighted average 是一种计算平均值的方法,非常省storage 和 memory, 但是不是很精确。 然后引出一个bias correction 的概念,就是为了能使得 Exponentially weighted average 更加精确.

  

momentum (or called Gradient descent with momentum)

传统的Gradient descent 算法有如下图所示的问题 - 每次迭代都会来回跳动,不直接指向optimum, 在没有做feature scaling 的时候尤其明显。所以引出一个修正的算法 - Gradient descent with momentum.

  

  

RMSprop

目的和上面讲到的Momentum是一样的,就是使得每次迭代都尽量指向optimum而不是来回跳动. 算法实现如下. RMSprop带来的好处是迭代更快,和可以选用更大的learning rate.

  

Adam optimation algorithm:

  结合了Momentum 和 RMSprop 两种算法. Adam stands for Adaptive mement estimation.

  

  

Learning rate decay

why? to reduce the oscillation near the central point.

  

有哪些实现方式呢?

  

Local optima and saddle point

在大型神经网络里,saddle point 可能比local optima更常见.

  

  

Ref:

Coursera, Deep leaning, Andrew Ng

Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week2, Optimization algorithms的更多相关文章

  1. 《Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization》课堂笔记

    Lesson 2 Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization 这篇文章其 ...

  2. [C4] Andrew Ng - Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization

    About this Course This course will teach you the "magic" of getting deep learning to work ...

  3. Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Initialization)

    声明:所有内容来自coursera,作为个人学习笔记记录在这里. Initialization Welcome to the first assignment of "Improving D ...

  4. Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Gradient Checking)

    声明:所有内容来自coursera,作为个人学习笔记记录在这里. Gradient Checking Welcome to the final assignment for this week! In ...

  5. Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Regularization)

    声明:所有内容来自coursera,作为个人学习笔记记录在这里. Regularization Welcome to the second assignment of this week. Deep ...

  6. Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week2, Assignment(Optimization Methods)

    声明:所有内容来自coursera,作为个人学习笔记记录在这里. 请不要ctrl+c/ctrl+v作业. Optimization Methods Until now, you've always u ...

  7. 课程二(Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization),第一周(Practical aspects of Deep Learning) —— 4.Programming assignments:Gradient Checking

    Gradient Checking Welcome to this week's third programming assignment! You will be implementing grad ...

  8. 吴恩达《深度学习》-课后测验-第二门课 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)-Week 1 - Practical aspects of deep learning(第一周测验 - 深度学习的实践)

    Week 1 Quiz - Practical aspects of deep learning(第一周测验 - 深度学习的实践) \1. If you have 10,000,000 example ...

  9. 吴恩达《深度学习》-第二门课 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)-第一周:深度学习的实践层面 (Practical aspects of Deep Learning) -课程笔记

    第一周:深度学习的实践层面 (Practical aspects of Deep Learning) 1.1 训练,验证,测试集(Train / Dev / Test sets) 创建新应用的过程中, ...

  10. 课程二(Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization),第三周(Hyperparameter tuning, Batch Normalization and Programming Frameworks) —— 2.Programming assignments

    Tensorflow Welcome to the Tensorflow Tutorial! In this notebook you will learn all the basics of Ten ...

随机推荐

  1. Java 验证代理ip

    原文地址:http://www.cnblogs.com/junrong624/p/5416503.html 1 import java.io.IOException; import java.io.I ...

  2. 如何搭建高可用redis架构?

    如何搭建高可用redis架构? 温国兵 架构师小秘圈 昨天 作者:温国兵,曾任职于酷狗音乐,现为三七互娱 DBA.目前主要关注领域:数据库自动化运维.高可用架构设计.数据库安全.海量数据解决方案.以及 ...

  3. 洛谷P1731 生日蛋糕

    李煜东太神了啊啊啊啊啊! 生日蛋糕,著名搜索神题(还有虫食算). 当年的我30分.... 这哥们的程序0ms... 还有他的树网的核也巨TM神. 疯狂剪枝! DFS(int d, int s, int ...

  4. js 判断所选时间(或者当前时间)是否在某一时间段的实现代码

    var time_range = function (beginTime, endTime, nowTime) { var strb = beginTime.split (":") ...

  5. Nlog 简单的快速攻略

    废话不多说直接进入正题. 1.在项目中加入Nlog的应用 安装后会出现两个文件 2.我们打开Nlog.config配置文件设置日志记录 <?xml version="1.0" ...

  6. 在Linux中复制文件夹下的全部文件到另外文件夹

    https://jingyan.baidu.com/article/656db918f83c0de380249c5a.html 在Linux系统中复制或拷贝文件我们可以用cp或者copy命令,但要对一 ...

  7. echarts柱状图鼠标移动在柱状图上显示数据给数据添加单位

    解决问题: 关键代码如下: tooltip : { trigger: 'axis', formatter:function(params){ return params[0].name+"& ...

  8. Elastic 开发篇(3)

    1.报错: java.lang.NoSuchFieldError: FAIL_ON_SYMBOL_HASH_OVERFLOW 原因: 系统中已引入jackson版本,但版本较低,缺少所需要的字段. 解 ...

  9. qml:: QVariant转为自定义类型

    QVariant可以实现C++与qml之间的自定义类型的传递: 以QObject类型为例: 1.  QObject转为QVariant QVariant var = QVariant::fromVal ...

  10. 运维监控-使用Zabbix Server 添加自定义 item

    运维监控-使用Zabbix Server 监控自定义 item  作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 本篇博客就直接开门见山如何使用Zabbix Server 监控自定义 ...