题目描述

  数轴上有\(n\)个点,你要从位置\(0\)去位置\(B\),你每秒钟可以移动\(1\)单位。还有\(m\)个限制,每个限制\((x,y)\)表示你要在第\(t\)秒之后(可以是第\(t\)秒)经过位置\(y\)。问你最少需要几秒。

  \(n\leq 1000\)。

题解

  可以发现如果\(B\leq x_i\leq x_j\)且\(y_i\leq y_j\)那么第\(i\)个限制就没有效果。所以我们每次一定是选择当前还没走过的最边上两个端点之一,走过去,然后等待。

  这样就可以DP了。

  设\(f_{i,j,0}\)为\(i\)$j$这些限制还没有满足且当前在$x_i$的最小时刻,$f_{i,j,1}$为$i$\(j\)这些限制还没有满足且当前在\(x_j\)的最小时刻。这样就可以区间DP了。

  时间复杂度:\(O(n^2)\)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<cmath>
#include<functional>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
void sort(int &a,int &b)
{
if(a>b)
swap(a,b);
}
void open(const char *s)
{
#ifndef ONLINE_JUDGE
char str[100];
sprintf(str,"%s.in",s);
freopen(str,"r",stdin);
sprintf(str,"%s.out",s);
freopen(str,"w",stdout);
#endif
}
struct xj
{
int x,t;
};
xj a[1010];
int cmp(xj a,xj b)
{
return a.x<b.x;
}
int f[1010][1010][2];
int main()
{
int n,orzxj,k;
scanf("%d%d%d",&n,&orzxj,&k);
int i,j;
for(i=1;i<=n;i++)
scanf("%d%d",&a[i].x,&a[i].t);
a[++n].x=k;
a[n].t=0;
sort(a+1,a+n+1,cmp);
int x;
for(i=1;i<=n;i++)
if(a[i].x==k&&!a[i].t)
x=i;
for(i=1;i<=x;i++)
for(j=n;j>=x;j--)
if(i==1&&j==n)
{
f[i][j][0]=max(a[i].x,a[i].t);
f[i][j][1]=max(a[j].x,a[j].t);
}
else
{
f[i][j][0]=f[i][j][1]=0x7fffffff;
if(j!=n)
{
f[i][j][0]=min(f[i][j][0],max(a[i].t,f[i][j+1][1]+a[j+1].x-a[i].x));
f[i][j][1]=min(f[i][j][1],max(a[j].t,f[i][j+1][1]+a[j+1].x-a[j].x));
}
if(i!=1)
{
f[i][j][0]=min(f[i][j][0],max(a[i].t,f[i-1][j][0]+a[i].x-a[i-1].x));
f[i][j][1]=min(f[i][j][1],max(a[j].t,f[i-1][j][0]+a[j].x-a[i-1].x));
}
}
printf("%d\n",f[x][x][0]);
return 0;
}

【BZOJ3379】【USACO2004】交作业 区间DP的更多相关文章

  1. 【bzoj3379】[Usaco2004 Open]Turning in Homework 交作业 区间dp

    题目描述 数轴上有C个点,每个点有一个坐标和一个访问时间,必须在这个时间后到达这个点才算访问完成.可以在某个位置停留.每在数轴上走一个单位长度消耗一个单位的时间,问:访问所有点并最终到B花费的最小时间 ...

  2. bzoj 3379 - [USACO2004] 交作业

    Description 一个数轴上有 \(n \le 1000\) 个位置, 每个位置有一个时间 \(t_i\) 要求在 时刻 \(t_i\) 后, 至少经过该位置一次. (去交作业) 求从 \(0\ ...

  3. 【BZOJ3379】[Usaco2004 Open]Turning in Homework 交作业 DP

    [BZOJ3379][Usaco2004 Open]Turning in Homework 交作业 Description     贝茜有C(1≤C≤1000)门科目的作业要上交,之后她要去坐巴士和奶 ...

  4. BZOJ 3379: [Usaco2004 Open]Turning in Homework 交作业

    Description     贝茜有C(1≤C≤1000)门科目的作业要上交,之后她要去坐巴士和奶牛同学回家. 每门科目的老师所在的教室排列在一条长为H(1≤H≤1000)的走廊上,他们只在课后接收 ...

  5. P2339 提交作业usaco(区间dp)

    P2339 提交作业usaco 题目背景 usaco 题目描述 贝西在哞哞大学选修了 C 门课,她要把所有作业分别交给每门课的老师,然后去车站和同学们一起回家.每个老师在各自的办公室里,办公室要等他们 ...

  6. 区间dp提升复习

    区间\(dp\)提升复习 不得不说这波题真的不简单... 技巧总结: 1.有时候转移可以利用背包累和 2.如果遇到类似区间添加限制的题可以直接把限制扔在区间上,每次只考虑\([l,r]\)被\([i, ...

  7. POJ 1991 Turning in Homework(区间DP)

    题目链接 Turning in Homework 考虑区间DP $f[i][j][0]$为只考虑区间$[i, j]$且最后在$a[i]$位置交作业的答案. $f[i][j][1]$为只考虑区间$[i, ...

  8. HDU 2476 String painter (区间DP)

    题意:给出两个串a和b,一次只能将一个区间刷一次,问最少几次能让a=b 思路:首先考虑最坏的情况,就是先将一个空白字符串刷成b需要的次数,直接区间DP[i][j]表示i到j的最小次数. 再考虑把a变成 ...

  9. ZOJ3469 Food Delivery 区间DP

    题意:有一家快餐店送外卖,现在同时有n个家庭打进电话订购,送货员得以V-1的速度一家一家的运送,但是每一个家庭都有一个不开心的值,每分钟都会增加一倍,值达到一定程度,该家庭将不会再订购外卖了,现在为了 ...

随机推荐

  1. Jvm 参数笔记

    Jvm参数含义 https://cloud.tencent.com/developer/article/1129474 从一道题说起 https://blog.csdn.net/crazylzxlzx ...

  2. Python全栈开发之路 【第三篇】:Python基础之字符编码和文件操作

    本节内容 一.三元运算 三元运算又称三目运算,是对简单的条件语句的简写,如: 简单条件语句: if 条件成立: val = 1 else: val = 2 改成三元运算: val = 1 if 条件成 ...

  3. Selenium库

    '''自动化测试工具,支持多种浏览器.爬虫中主要用来解决JavaScrip渲染的问题.''''''基本使用'''from selenium import webdriverfrom selenium. ...

  4. 这款APP太像微信 腾讯起诉索赔1000万

    去年8月,“币应”(inChat)APP上线,号称是一款原创的区块链加密通讯工具,而界面与微信极为相似,图标是白配绿色调,内部界面几乎一模一样,通讯录.朋友圈的界面完全相同.里面的小游戏,也从微信拿来 ...

  5. 1171: lfx捧杯稳啦!

    escription Lfx在复习离散的时候突然想到了一个算法题,毕竟是lfx, 算法题如下: 他想知道这样的问题,先定义1~n中即是3的倍数,又是11的倍数的那些数的和sum, 他想知道sum有多少 ...

  6. sql 表值函数与标量值函数

    写sql存储过程经常需要调用一些函数来使处理过程更加合理,也可以使函数复用性更强,不过在写sql函数的时候可能会发现,有些函数是在表值函数下写的有些是在标量值下写的,区别是表值函数只能返回一个表,标量 ...

  7. shell正则表达

    shell正则表达 .*和.?的比较: 比如说匹配输入串A: 101000000000100 使用 1.*1 将会匹配到1010000000001,匹配方法:先匹配至输入串A的最后, 然后向前匹配,直 ...

  8. PAT 7-14 公路村村通

    https://pintia.cn/problem-sets/1111189748004499456/problems/1111189831248850957 现有村落间道路的统计数据表中,列出了有可 ...

  9. linux如何查看所有的用户(user)、用户组(group)、密码(password/passwd)

    linux如何查看所有的用户和组信息_百度经验https://jingyan.baidu.com/article/a681b0de159b093b184346a7.html linux添加用户.用户组 ...

  10. JMeter学习FTP测试计划(转)

    FTP服务主要提供上传和下载功能.有时间需要我们测试服务器上传和下载的性能.在这里我通过JMeter做一个FTP测试计划的例子. 1.创建一个线程组 2.线程组--->添加--->配置元件 ...