NN:神经网络算法进阶优化法,进一步提高手写数字识别的准确率—Jason niu
上一篇文章,比较了三种算法实现对手写数字识别,其中,SVM和神经网络算法表现非常好准确率都在90%以上,本文章进一步探讨对神经网络算法优化,进一步提高准确率,通过测试发现,准确率提高了很多。
首先,改变之一:
先在初始化权重的部分,采取一种更为好的随机初始化方法,我们依旧保持正态分布的均值不变,只对标准差进行改动,
初始化权重改变前,
def large_weight_initializer(self):
self.biases = [np.random.randn(y, 1) for y in self.sizes[1:]]
self.weights = [np.random.randn(y, x) for x, y in zip(self.sizes[:-1], self.sizes[1:])]
初始化权重改变后,
def default_weight_initializer(self):
self.biases = [np.random.randn(y, 1) for y in self.sizes[1:]]
self.weights = [np.random.randn(y, x)/np.sqrt(x) for x, y in zip(self.sizes[:-1], self.sizes[1:])]
改变之二:
为了减少Overfitting,降低数据局部噪音影响,将原先的目标函数由 quadratic cost 改为 cross-enrtopy cost
class CrossEntropyCost(object):
def fn(a, y):
return np.sum(np.nan_to_num(-y*np.log(a)-(1-y)*np.log(1-a)))
def delta(z, a, y):
return (a-y)
改变之三:
将S函数改为Softmax函数
class SoftmaxLayer(object):
def __init__(self, n_in, n_out, p_dropout=0.0):
self.n_in = n_in
self.n_out = n_out
self.p_dropout = p_dropout
self.w = theano.shared(
np.zeros((n_in, n_out), dtype=theano.config.floatX),
name='w', borrow=True)
self.b = theano.shared(
np.zeros((n_out,), dtype=theano.config.floatX),
name='b', borrow=True)
self.params = [self.w, self.b] def set_inpt(self, inpt, inpt_dropout, mini_batch_size):
self.inpt = inpt.reshape((mini_batch_size, self.n_in))
self.output = softmax((1-self.p_dropout)*T.dot(self.inpt, self.w) + self.b)
self.y_out = T.argmax(self.output, axis=1)
self.inpt_dropout = dropout_layer(
inpt_dropout.reshape((mini_batch_size, self.n_in)), self.p_dropout)
self.output_dropout = softmax(T.dot(self.inpt_dropout, self.w) + self.b) def cost(self, net):
"Return the log-likelihood cost."
return -T.mean(T.log(self.output_dropout)[T.arange(net.y.shape[0]), net.y]) def accuracy(self, y):
"Return the accuracy for the mini-batch."
return T.mean(T.eq(y, self.y_out))
NN:神经网络算法进阶优化法,进一步提高手写数字识别的准确率—Jason niu的更多相关文章
- 吴裕雄 python 神经网络TensorFlow实现LeNet模型处理手写数字识别MNIST数据集
import tensorflow as tf tf.reset_default_graph() # 配置神经网络的参数 INPUT_NODE = 784 OUTPUT_NODE = 10 IMAGE ...
- 吴裕雄 python 神经网络——TensorFlow实现AlexNet模型处理手写数字识别MNIST数据集
import tensorflow as tf # 输入数据 from tensorflow.examples.tutorials.mnist import input_data mnist = in ...
- 【问题解决方案】Keras手写数字识别-ConnectionResetError: [WinError 10054] 远程主机强迫关闭了一个现有的连接
参考:台大李宏毅老师视频课程-Keras-Demo 在载入数据阶段报错: ConnectionResetError: [WinError 10054] 远程主机强迫关闭了一个现有的连接 Google之 ...
- 【机器学习】李宏毅机器学习-Keras-Demo-神经网络手写数字识别与调参
参考: 原视频:李宏毅机器学习-Keras-Demo 调参博文1:深度学习入门实践_十行搭建手写数字识别神经网络 调参博文2:手写数字识别---demo(有小错误) 代码链接: 编程环境: 操作系统: ...
- 利用神经网络算法的C#手写数字识别
欢迎大家前往云+社区,获取更多腾讯海量技术实践干货哦~ 下载Demo - 2.77 MB (原始地址):handwritten_character_recognition.zip 下载源码 - 70. ...
- 实现手写数字识别(数据集50000张图片)比较3种算法神经网络、灰度平均值、SVM各自的准确率—Jason niu
对手写数据集50000张图片实现阿拉伯数字0~9识别,并且对结果进行分析准确率, 手写数字数据集下载:http://yann.lecun.com/exdb/mnist/ 首先,利用图片本身的属性,图片 ...
- 利用神经网络算法的C#手写数字识别(一)
利用神经网络算法的C#手写数字识别 转发来自云加社区,用于学习机器学习与神经网络 欢迎大家前往云+社区,获取更多腾讯海量技术实践干货哦~ 下载Demo - 2.77 MB (原始地址):handwri ...
- C#中调用Matlab人工神经网络算法实现手写数字识别
手写数字识别实现 设计技术参数:通过由数字构成的图像,自动实现几个不同数字的识别,设计识别方法,有较高的识别率 关键字:二值化 投影 矩阵 目标定位 Matlab 手写数字图像识别简介: 手写 ...
- 利用神经网络算法的C#手写数字识别(二)
利用神经网络算法的C#手写数字识别(二) 本篇主要内容: 让项目编译通过,并能打开图片进行识别. 1. 从上一篇<利用神经网络算法的C#手写数字识别>中的源码地址下载源码与资源, ...
随机推荐
- Jenkins三.1 配置maven
maven配置安装下载 wget http://mirrors.hust.edu.cn/apache/maven/maven-3/3.3.9/binaries/apache-maven-3.3.9-b ...
- clock gen sdk 代码笔记
int ClockConfig(void) { u32 DIVCLK_DIVIDE = 10; u32 CLKFBOUT_MULT = 53; u32 CLKFBOUT_FRAC = 625; u32 ...
- mysql解决外网不能连接
mysql解决外网不能连接 Author:SimpleWu 或许有些时候会遇到通过ip地址访问项目的数据库,可是访问失败了. 现在给大家一种解决方案: #进入mysql数据库 USE mysql; # ...
- LeetCode(124):二叉树中的最大路径和
Hard! 题目描述: 给定一个非空二叉树,返回其最大路径和. 本题中,路径被定义为一条从树中任意节点出发,达到任意节点的序列.该路径至少包含一个节点,且不需要经过根节点. 示例 1: 输入: [1, ...
- ERROR 1045 (28000): Access denied for user 'mysql'@'localhost' (using password: YES
一.有时可以直接输入命令: mysql进入数据库 启动数据库:# mysqld_safe & 二.查看用户命令: mysql> use mysql; Reading table info ...
- laravel 关联查询
- cf1143E 倍增好题!
一开始感觉用莫队可以搞一下,但是看了题解才发现这题其实是倍增套路题 把排列转换成nxt数组,然后倍增dp[i][j]表示第i个数后面有(1<<j)个数的最靠左的区间 然后从右往左扫一次即可 ...
- SpringMvc框架MockMvc单元测试注解及其原理分析
来源:https://www.yoodb.com/ 首先简单介绍一下Spring,它是一个轻量级开源框架,简单的来说,Spring是一个分层的JavaSE/EEfull-stack(一站式) 轻量级开 ...
- Python_网络编程udp-飞秋自动攻击
# 模拟一个接收数据import socketimport time def auto_hack(udp_socket, recv_msg, revc_ip, revc_port=2425): # 发 ...
- OpenCV-Python入门教程5-阈值分割
一.固定阈值分割 import cv2 import matplotlib.pyplot as plt # 灰度图读入 img = cv2.imread('gradient.jpg', 0) # 阈值 ...