链接:http://acm.hdu.edu.cn/showproblem.php?pid=4035

题意:
有n个房间,由n-1条隧道连通起来,实际上就形成了一棵树,
从结点1出发,开始走,在每个结点i都有3种可能:
1.被杀死,回到结点1处(概率为ki)
2.找到出口,走出迷宫 (概率为ei)
3.和该点相连有m条边,随机走一条
求:走出迷宫所要走的边数的期望值。

设 E[i]表示在结点i处,要走出迷宫所要走的边数的期望。E[1]即为所求。

叶子结点:
E[i] = ki*E[1] + ei*0 + (1-ki-ei)*(E[father[i]] + 1);
= ki*E[1] + (1-ki-ei)*E[father[i]] + (1-ki-ei);

非叶子结点:(m为与结点相连的边数)
E[i] = ki*E[1] + ei*0 + (1-ki-ei)/m*( E[father[i]]+1 + ∑( E[child[i]]+1 ) );
= ki*E[1] + (1-ki-ei)/m*E[father[i]] + (1-ki-ei)/m*∑(E[child[i]]) + (1-ki-ei);

设对每个结点:E[i] = Ai*E[1] + Bi*E[father[i]] + Ci;

对于非叶子结点i,设j为i的孩子结点,则
∑(E[child[i]]) = ∑E[j]
= ∑(Aj*E[1] + Bj*E[father[j]] + Cj)
= ∑(Aj*E[1] + Bj*E[i] + Cj)
带入上面的式子得
(1 - (1-ki-ei)/m*∑Bj)*E[i] = (ki+(1-ki-ei)/m*∑Aj)*E[1] + (1-ki-ei)/m*E[father[i]] + (1-ki-ei) + (1-ki-ei)/m*∑Cj;
由此可得
Ai = (ki+(1-ki-ei)/m*∑Aj) / (1 - (1-ki-ei)/m*∑Bj);
Bi = (1-ki-ei)/m / (1 - (1-ki-ei)/m*∑Bj);
Ci = ( (1-ki-ei)+(1-ki-ei)/m*∑Cj ) / (1 - (1-ki-ei)/m*∑Bj);

对于叶子结点
Ai = ki;
Bi = 1 - ki - ei;
Ci = 1 - ki - ei;

从叶子结点开始,直到算出 A1,B1,C1;

E[1] = A1*E[1] + B1*0 + C1;
所以
E[1] = C1 / (1 - A1);
若 A1趋近于1则无解...

转载自博客:https://blog.csdn.net/morgan_xww/article/details/6776947/

代码:

#include <cstdio>
#include <iostream>
#include <vector>
#include <cmath> using namespace std; const int MAXN = + ; double e[MAXN], k[MAXN];
double A[MAXN], B[MAXN], C[MAXN]; vector<int> v[MAXN]; bool search(int i, int fa)
{
if ( v[i].size() == && fa != - )
{
A[i] = k[i];
B[i] = - k[i] - e[i];
C[i] = - k[i] - e[i];
return true;
} A[i] = k[i];
B[i] = ( - k[i] - e[i]) / v[i].size();
C[i] = - k[i] - e[i];
double tmp = ; for (int j = ; j < (int)v[i].size(); j++)
{
if ( v[i][j] == fa ) continue;
if ( !search(v[i][j], i) ) return false;
A[i] += A[v[i][j]] * B[i];
C[i] += C[v[i][j]] * B[i];
tmp += B[v[i][j]] * B[i];
}
if ( fabs(tmp - ) < 1e- ) return false;
A[i] /= - tmp;
B[i] /= - tmp;
C[i] /= - tmp;
return true;
} int main()
{
int nc, n, s, t; cin >> nc;
for (int ca = ; ca <= nc; ca++)
{
cin >> n;
for (int i = ; i <= n; i++)
v[i].clear(); for (int i = ; i < n; i++)
{
cin >> s >> t;
v[s].push_back(t);
v[t].push_back(s);
}
for (int i = ; i <= n; i++)
{
cin >> k[i] >> e[i];
k[i] /= 100.0;
e[i] /= 100.0;
} cout << "Case " << ca << ": ";
if ( search(, -) && fabs( - A[]) > 1e- )
cout << C[]/( - A[]) << endl;
else
cout << "impossible" << endl;
}
return ;
}

Maze-hdu4035(DP求概率)的更多相关文章

  1. hdu4035 Maze (树上dp求期望)

    dp求期望的题. 题意: 有n个房间,由n-1条隧道连通起来,实际上就形成了一棵树, 从结点1出发,开始走,在每个结点i都有3种可能: 1.被杀死,回到结点1处(概率为ki) 2.找到出口,走出迷宫 ...

  2. CoderForce 148D-Bag of mice (概率DP求概率)

    题目大意:美女与野兽在玩画鸽子的游戏.鸽子在用黑布遮住的笼子里,白色的有w只,黑色的有b只,每次拿出一只作画,谁先画到白色的鸽子谁就赢.美女首先画,因为野兽太丑,它每次画的时候都会吓跑一只鸽子,所有出 ...

  3. HDU-4089 Activation (概率DP求概率)

    题目大意:一款新游戏注册账号时,有n个用户在排队.每处理一个用户的信息时,可能会出现下面四种情况: 1.处理失败,重新处理,处理信息仍然在队头,发生的概率为p1: 2.处理错误,处理信息到队尾重新排队 ...

  4. A Dangerous Maze (II) LightOJ - 1395(概率dp)

    A Dangerous Maze (II) LightOJ - 1395(概率dp) 这题是Light Oj 1027的加强版,1027那道是无记忆的. 题意: 有n扇门,每次你可以选择其中一扇.xi ...

  5. HDU3853-LOOPS(概率DP求期望)

    LOOPS Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others) Total Su ...

  6. hdu3076--ssworld VS DDD(概率dp第三弹,求概率)

    ssworld VS DDD Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) T ...

  7. POJ2096 Collecting Bugs(概率DP,求期望)

    Collecting Bugs Ivan is fond of collecting. Unlike other people who collect post stamps, coins or ot ...

  8. Poj 2096 (dp求期望 入门)

    / dp求期望的题. 题意:一个软件有s个子系统,会产生n种bug. 某人一天发现一个bug,这个bug属于某种bug,发生在某个子系统中. 求找到所有的n种bug,且每个子系统都找到bug,这样所要 ...

  9. POJ 2096 (dp求期望)

    A - Collecting Bugs Time Limit:10000MS     Memory Limit:64000KB     64bit IO Format:%I64d & %I64 ...

随机推荐

  1. Codeforces 1091E New Year and the Acquaintance Estimation [图论]

    洛谷 Codeforces 思路 有一个定理:Erdős–Gallai定理. 然后观察样例,可以猜到答案必定是奇偶性相同的一段区间,那么二分左右端点即可. 定理和这个猜测暂时都懒得学/证,留坑. #i ...

  2. IBM X 3650 M3服务器RAID0设置

    1 进入磁盘整列设置窗口 1.1 开机在提示符页面下按[F1]进入BIOS设置 1.2 依次进入子菜单[System Settings]à[Adapters and UEFI Drivers] 1.3 ...

  3. filter(HTML)滤镜用法

    CCS滤镜参考语法:STYLE="filter:filtername(fparameter1, fparameter2...)" (Filtername为滤镜的名称,fparame ...

  4. Confluence 6 配置服务器基础地址备注

    使用不同 URL.如果你配置了不同的基础 URL 地址或者你站点的访问者使用了不同的 URL 地址来访问你的 Confluence 地址,你有很大概率可能会受到错误信息. 修改上下文地址.如果你修改了 ...

  5. kali linux宿主机和虚拟机互访实现方案

    1.攻防模拟中,将DVWA安装到自己的宿主机中,在kali Linux中通过sqlmap和其他工具启动嗅探攻击,需要配置网络.虚拟机采用桥接方式,并复制Mac地址状况. 2.查看各自系统下的IP地址. ...

  6. kali访问宿主机Web页面解决方案

    1.首先安装好PHPDVWA测试平台,将等级设置成low,kali中自带了python2.7.为了不再宿主机中修改python3.6,所以要利用kali来模访问宿主机中的Web页面.如果不进行配置修改 ...

  7. CF939F

    好神奇的dp... 首先有一个很简单的思想:设dp[i][j]表示目前到了第i分钟,朝上的面被烤了j分钟的情况下所需的最小交换次数 那么有转移:dp[i][j]=min(dp[i-1][j],dp[i ...

  8. Appium 常用方法总结 (python 版)

    1.app后台运行 driver.background_app(5) 2.锁屏 driver.lock(5) 3.隐藏键盘 driver.hide_keyboard() 4.启动一个app或者在当前a ...

  9. Centos7.4上Apache(http)编译安装

    前提:1.这个centos操作系统能上网 2.yum 安装apr,apr-util,zlib-devel,groupinstall  Development  Tools,gcc 1.在apache的 ...

  10. 首次使用idea步骤

    修改代码提示快捷键 默认是ctrl+空格,这个会跟中英文切换的快捷键冲突. 我这里改成了alt+/ tomcat的配置