后缀自动机构造后缀数组。

因为有个SB题洛谷5115,它逼迫我学习后缀数组...(边分树合并是啥?)。

一些定义:sa[i]表示字典序排第i的后缀是从哪里开始的。Rank[i]表示后缀i的排名。height[i]表示排名i和i - 1的后缀的最长公共前缀。

首先我们可以建出后缀树,然后按字典序DFS即可获得sa数组和rank数组。

接下来要求height,使用经典后缀数组的求法即可。

说一下关于后缀数组经典倍增构造方法的一些理解。关于网上流传的那个锯齿形图,其实就是把上一次的两个排名拼接起来进行排序。

height数组的构建也很神奇。按照下标求,可以发现sa[Rank[i]](它自己)和j = sa[Rank[i] - 1]和i + 1的关系:

若i和j的[1, x]这些位相同,那么i + 1和j的[2, x]这些位相同。所以height[Rank[i]]至少有x - 1。

拍过的模板......暂时没找到模板题(板子字符集居然是62...是想卡爆SAM吧)

  1 #include <bits/stdc++.h>
2
3 const int N = 200010;
4
5 int n, pw[N], ST[N][20];
6 int tr[N][26], len[N], fail[N], tot = 1, last = 1, ed[N], Lp[N];
7 int tr2[N][26], sa[N], Rank[N], height[N], num;
8 char str[N];
9
10 inline void insert(char c, int id) {
11 int f = c - 'a', p = last, np = ++tot;
12 last = np;
13 ed[np] = 1;
14 Lp[np] = id;
15 len[np] = len[p] + 1;
16 while(p && !tr[p][f]) {
17 tr[p][f] = np;
18 p = fail[p];
19 }
20 if(!p) {
21 fail[np] = 1;
22 }
23 else {
24 int Q = tr[p][f];
25 if(len[Q] == len[p] + 1) {
26 fail[np] = Q;
27 }
28 else {
29 int nQ = ++tot;
30 Lp[nQ] = Lp[Q];
31 len[nQ] = len[p] + 1;
32 fail[nQ] = fail[Q];
33 fail[Q] = fail[np] = nQ;
34 memcpy(tr[nQ], tr[Q], sizeof(tr[Q]));
35 while(tr[p][f] == Q) {
36 tr[p][f] = nQ;
37 p = fail[p];
38 }
39 }
40 }
41 return;
42 }
43
44 void DFS(int x) {
45 if(ed[x]) {
46 sa[++num] = Lp[x];
47 Rank[Lp[x]] = num;
48 }
49 for(int i = 0; i < 26; i++) {
50 if(!tr2[x][i]) continue;
51 DFS(tr2[x][i]);
52 }
53 return;
54 }
55
56 inline void getsa() {
57 for(int i = 2; i <= tot; i++) { /// build suffix tree
58 char c = str[Lp[i] + len[fail[i]]];
59 tr2[fail[i]][c - 'a'] = i;
60 }
61 DFS(1); /// DFS suffix tree to get SA and Rank
62 for(int i = 1, j, k = 0; i <= n; i++) { /// get height
63 j = sa[Rank[i] - 1];
64 if(!j) continue;
65 if(k) k--;
66 while(i + k <= n && j + k <= n && str[i + k] == str[j + k]) {
67 k++;
68 }
69 height[Rank[i]] = k;
70 }
71 return;
72 }
73
74 inline void prework() {
75 for(int i = 2; i <= n; i++) pw[i] = pw[i >> 1] + 1;
76 for(int i = 1; i <= n; i++) ST[i][0] = height[i];
77 for(int j = 1; j <= pw[n]; j++) {
78 for(int i = 1; i + (1 << j) - 1 <= n; i++) {
79 ST[i][j] = std::min(ST[i][j - 1], ST[i + (1 << (j - 1))][j - 1]);
80 }
81 }
82 return;
83 }
84
85 inline getSmall(int l, int r) {
86 if(l > r) std::swap(l, r);
87 l++;
88 int t = pw[r - l + 1];
89 return std::min(ST[l][t], ST[r - (1 << t) + 1][t]);
90 }
91
92 int main() {
93 scanf("%s", str + 1);
94 n = strlen(str + 1);
95 for(int i = n; i >= 1; i--) {
96 insert(str[i], i);
97 }
98 getsa();
99 prework();
100
101 int m;
102 scanf("%d", &m);
103 for(int i = 1; i <= m; i++) {
104 int x, y;
105 scanf("%d%d", &x, &y);
106 if(x == y) {
107 printf("%d ", n - x + 1);
108 }
109 else {
110 int t = getSmall(Rank[x], Rank[y]);
111 printf("%d ", t);
112 }
113 }
114
115 return 0;
116 }

SAM build SA求lcp

后缀数组的第X种求法的更多相关文章

  1. POJ 3261 Milk Patterns 后缀数组求 一个串种 最长可重复子串重复至少k次

    Milk Patterns   Description Farmer John has noticed that the quality of milk given by his cows varie ...

  2. 1402 后缀数组 (hash+二分)

    描述 后缀数组 (SA) 是一种重要的数据结构,通常使用倍增或者DC3算法实现,这超出了我们的讨论范围.在本题中,我们希望使用快排.Hash与二分实现一个简单的 O(n log^2⁡n ) 的后缀数组 ...

  3. CH 1402 - 后缀数组 - [字符串hash]

    题目链接:传送门 描述 后缀数组 (SA) 是一种重要的数据结构,通常使用倍增或者DC3算法实现,这超出了我们的讨论范围. 在本题中,我们希望使用快排.Hash与二分实现一个简单的 $O(n \log ...

  4. CH1402 后缀数组【Hash】【字符串】【二分】

    1402 后缀数组 0x10「基本数据结构」例题 描述 后缀数组 (SA) 是一种重要的数据结构,通常使用倍增或者DC3算法实现,这超出了我们的讨论范围.在本题中,我们希望使用快排.Hash与二分实现 ...

  5. 后缀数组:倍增法和DC3的简单理解

    一些定义:设字符串S的长度为n,S[0~n-1]. 子串:设0<=i<=j<=n-1,那么由S的第i到第j个字符组成的串为它的子串S[i,j]. 后缀:设0<=i<=n- ...

  6. hdu 1403 Longest Common Substring(最长公共子字符串)(后缀数组)

    http://acm.hdu.edu.cn/showproblem.php?pid=1403 Longest Common Substring Time Limit: 8000/4000 MS (Ja ...

  7. hdu3518 Boring counting(后缀数组)

    Boring counting 题目传送门 解题思路 后缀数组.枚举每种长度,对于每个字符串,记录其最大起始位置和最小起始位置,比较是否重合. 代码如下 #include <bits/stdc+ ...

  8. 2019牛客多校第四场 I题 后缀自动机_后缀数组_求两个串de公共子串的种类数

    目录 求若干个串的公共子串个数相关变形题 对一个串建后缀自动机,另一个串在上面跑同时计数 广义后缀自动机 后缀数组 其他:POJ 3415 求两个串长度至少为k的公共子串数量 @(牛客多校第四场 I题 ...

  9. 后缀数组SA学习笔记

    什么是后缀数组 后缀数组\(sa[i]\)表示字符串中字典序排名为\(i\)的后缀位置 \(rk[i]\)表示字符串中第\(i\)个后缀的字典序排名 举个例子: ababa a b a b a rk: ...

随机推荐

  1. day 7-7 线程池与进程池

    一. 进程池与线程池 在刚开始学多进程或多线程时,我们迫不及待地基于多进程或多线程实现并发的套接字通信,然而这种实现方式的致命缺陷是:服务的开启的进程数或线程数都会随着并发的客户端数目地增多而增多,这 ...

  2. Spring的Bean配置

    IOC和DI 网上概念很多,感兴趣可以去搜一搜,在这里我就给个比喻: IOC:以前我们买东西都要去商店买,用了IOC之后,我们只要在门口放个箱子, Spring就会给我相应商品,ಠᴗಠ 举个例子 cl ...

  3. vue-cli项目开发/生产环境代理实现跨域请求+webpack配置开发/生产环境的接口地址

    一.开发环境中跨域 使用 Vue-cli 创建的项目,开发地址是 localhost:8080,需要访问非本机上的接口http://10.1.0.34:8000/queryRole.不同域名之间的访问 ...

  4. python学习笔记(1)--python特点

    python诞生于复杂的信息系统时代,是计算机时代演进的一种选择. python的特点,通用语言,脚本语言,跨平台语言.这门语言可以用于普适的计算,不局限于某一类应用,通用性是它的最大特点.pytho ...

  5. 从git中删除 .idea 目录

    将.idea目录加入ignore清单: $ echo '.idea' >> .gitignore   从git中删除idea: $ git rm —cached -r .idea 3 将. ...

  6. vue開發環境搭建

    npm(node package manager),nodejs的包管理器,用於nodejs插件的安裝.卸載和管理依賴. 安裝npm: 檢查npm是否安裝成功及版本:npm -v 卸載npm: 更新n ...

  7. easyui 自动动态合并单元格

    .......onLoadSuccess : function(data) { if (data.rows.length > 0) { //调用mergeCellsByField()合并单元格 ...

  8. 2.ansible-playbook基本参数

    ansible-playbook的参数--force-handlers run handlers even if a task fails 强制执行handler--list-tags list al ...

  9. Redux学习(2) ----- 异步和中间件

    Redux中间件,其实就是一个函数, 当我们发送一个action的时候,先经过它,我们就可以对action进行处理,然后再发送action到达reducer, 改变状态,这时我们就可以在中间件中,对a ...

  10. C语言实现字符串逆序输出

    方法一: #include <stdio.h> #include <stdlib.h> #include <string.h> void Reverse(char ...