[JSOI2008]魔兽地图(树形dp)
DotR (Defense of the Robots) Allstars是一个风靡全球的魔兽地图,他的规则简单与同样流行的地图DotA (Defense of the Ancients) Allstars。
DotR里面的英雄只有一个属性——力量。他们需要购买装备来提升自己的力量值,每件装备都可以使佩戴它的英雄的力量值提高固定的点数,所以英雄的力量值等于它购买的所有装备的力量值之和。装备分为基本装备和高级装备两种。基本装备可以直接从商店里面用金币购买,而高级装备需要用基本装备或者较低级的高级装备来合成,合成不需要附加的金币。装备的合成路线可以用一棵树来表示。
比如,Sange and Yasha的合成需要Sange,Yasha和Sange and Yasha Recipe Scroll三样物品。其中Sange又要用Ogre Axe, Belt of Giant Strength和 Sange Recipe Scroll合成。每件基本装备都有数量限制,这限制了你不能无限制地合成某些性价比很高的装备。
现在,英雄Spectre有M个金币,他想用这些钱购买装备使自己的力量值尽量高。你能帮帮他吗?他会教你魔法Haunt(幽灵附体)作为回报的。
Solution
极强的一道树形dp题。
我们设dp[i][j][k]表示当前正在做以i为根的子树,我们需要用j个物品用于向上合成,花费了k元能够获得的最大收益。
首先我们可以递归回溯求出每个点的价格和他的限制购买次数(这个东西是和儿子节点相关的)。
然后就枚举向上传多少个物品,在这里我们记录一个辅助数组g[i][j]表示做到了第i棵子树,背包体积为j时能够获得的最大收益。
但它可能有多个联通块,做完每个子树后我们再把它合并到一个数组里就可以了。
Code
#include<iostream>
#include<cstdio>
#include<cstring>
#define inf 1e9
#define N 55
#define M 2010
using namespace std;
int dp[N][N<<][M],g[N][M],head[N],w[N],va[N],l[N],f[N][M],tot,m,n,ji[N];
struct efr{
int n,to,l;
}an[];
inline void add(int u,int v,int l){
an[++tot].n=head[u];
an[tot].to=v;
an[tot].l=l;
head[u]=tot;
}
void dfs(int u){
if(!head[u]){
l[u]=min(l[u],m/va[u]);//这里求出这件物品的购买限制
for(int i=;i<=l[u];++i)
for(int j=i;j<=l[u];++j)
dp[u][i][j*va[u]]=(j-i)*w[u];//j 表示买了多少个
return;
}
l[u]=inf;
for(int i=head[u];i;i=an[i].n){
int v=an[i].to;
dfs(v);
l[u]=min(l[u],l[v]/an[i].l);//更新l得知
va[u]+=va[v]*an[i].l;//在这里递归计算u的价值
}
l[u]=min(l[u],m/va[u]);
memset(g,-0x3f,sizeof(g));
g[][]=;
for(int o=l[u];o>=;--o){//枚举上传几个
int cnt=;
for(int i=head[u];i;i=an[i].n){
int v=an[i].to;
cnt++;
for(int j=m;j>=;--j)
for(int k=;k<=j;++k)
g[cnt][j]=max(g[cnt][j],g[cnt-][j-k]+dp[v][o*an[i].l][k]);
}
for(int i=;i<=o;++i)
for(int j=;j<=m;++j)
dp[u][i][j]=max(dp[u][i][j],g[cnt][j]+w[u]*(o-i));
}
}
inline char rd(){
char c=getchar();
while(c!='A'&&c!='B')c=getchar();
return c;
}
int main(){
scanf("%d%d",&n,&m);
memset(dp,-0x3f,sizeof(dp));
char c;
for(int i=;i<=n;++i){
scanf("%d",&w[i]);
c=rd();
if(c=='B')scanf("%d%d",&va[i],&l[i]);
else{
int x,y,z;
scanf("%d",&x);
for(int j=;j<=x;++j){
scanf("%d%d",&y,&z);
add(i,y,z);
ji[y]=;
}
}
}
int cnt=;
for(int i=;i<=n;++i)
if(!ji[i]){
dfs(i);
cnt++;
for(int j=;j<=m;++j)
for(int k=;k<=j;++k)
f[cnt][j]=max(f[cnt][j],f[cnt-][j-k]+dp[i][][k]);
}
int ans=;
for(int i=;i<=m;++i)
ans=max(ans,f[cnt][i]);
cout<<ans;
return ;
}
[JSOI2008]魔兽地图(树形dp)的更多相关文章
- [luogu4037 JSOI2008] 魔兽地图 (树形dp)
		
传送门 Description DotR (Defense of the Robots) Allstars是一个风靡全球的魔兽地图,他的规则简单与同样流行的地图DotA (Defense of the ...
 - BZOJ.1017.[JSOI2008]魔兽地图(树形DP 背包DP)
		
题目链接 树形DP,考虑子节点对父节点的贡献. 设f[x][i][j]表示当前为x,用i个x去合成上一层装备,花费为j的最大价值. 由子节点转移时 是一个分组背包,需要一个辅助数组g[i][j]表示前 ...
 - bzoj1017 [JSOI2008]魔兽地图DotR——DP
		
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1017 好难想的状态啊!f[i][j][k]表示i号物品有j个向上贡献,一共花了k钱的最大力量 ...
 - [BZOJ1017][JSOI2008]魔兽地图DotR 树形dp
		
1017: [JSOI2008]魔兽地图DotR Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 2597 Solved: 1010[Submit][ ...
 - BZOJ [JSOI2008]魔兽地图DotR
		
1017: [JSOI2008]魔兽地图DotR Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 1243 Solved: 532[Submit][S ...
 - 【bzoj1017】[JSOI2008]魔兽地图DotR
		
1017: [JSOI2008]魔兽地图DotR Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 1658 Solved: 755[Submit][S ...
 - 【BZOJ1017】[JSOI2008]魔兽地图(动态规划)
		
[BZOJ1017][JSOI2008]魔兽地图(动态规划) 题面 BZOJ 洛谷 题解 状态设一下,\(f[i][j][k]\)表示第\(i\)个物品,有\(j\)个用于合成,总花费为\(k\)的最 ...
 - BZOJ1017: [JSOI2008]魔兽地图DotR【树形DP】【玄学】
		
Description DotR (Defense of the Robots) Allstars是一个风靡全球的魔兽地图,他的规则简单与同样流行的地图DotA (Defense of the Anc ...
 - BZOJ1017 [JSOI2008]魔兽地图DotR  【树形dp + 背包dp】
		
题目链接 BZOJ1017 题解 orz hzwer 树形dp神题 设\(f[i][j][k]\)表示\(i\)号物品恰好花费\(k\)金币,并将\(j\)个物品贡献给父亲的合成时的最大收益 计算\( ...
 
随机推荐
- python-边练边学
			
#换行print(a),print(b),print(c)'''以上是不换行打印以下是换行打印'''print(a)print(b)print(c) #注释#python中的注释有三种方式:单行注释 ...
 - python--logging日志
			
一个非常详细的日志使用请看这里:http://www.cnblogs.com/dkblog/archive/2011/08/26/2155018.html # 导入日志模块 import loggin ...
 - MyBatis映射文件3(参数处理Map)
			
参数命名 POJO 如果多个参数,正好是业务逻辑的数据模型,那么我们就可以直接传入POJO,这样#{}中就可以直接使用属性名 Map 如果多个参数不是业务逻辑的数据模型,没有对应的POJO,为了方便, ...
 - 转《基于Ionic3实现微信支付和支付宝支付》
			
在Ionic应用里实现支付并不难,但是有的坑真是不爬不知道. 一:支付宝支付 网上关于支付宝支付cordova插件真是非常多,但是大多会报一些让你很无语的错误.比如sdk早已过时不是最新的,或者没有出 ...
 - laravel 守护进程Supervisor的配置
			
安装Supervisor Supervisor是Linux系统中常用的进程守护程序.如果队列进程queue:work意外关闭,它会自动重启启动队列进程.在Ubuntu安装Supervisor 非常简单 ...
 - 爬虫实战——Scrapy爬取伯乐在线所有文章
			
Scrapy简单介绍及爬取伯乐在线所有文章 一.简说安装相关环境及依赖包 1.安装Python(2或3都行,我这里用的是3) 2.虚拟环境搭建: 依赖包:virtualenv,virtualenvwr ...
 - Springboot中使用Xstream进行XML与Bean 相互转换
			
在现今的项目开发中,虽然数据的传输大部分都是用json格式来进行传输,但是xml毕竟也会有一些老的项目在进行使用,正常的老式方法是通过获取节点来进行一系列操作,个人感觉太过于复杂.繁琐.推荐一套简单的 ...
 - lombok 使用 Idea
			
Lombok 是一种 Java™ 实用工具,可用来帮助开发人员消除 Java 的冗长,尤其是对于简单的 Java 对象(POJO).它通过注解实现这一目的.import lombok.Getter;i ...
 - table2excel使用
			
原table2excel代码 /* * 采用jquery模板插件——jQuery Boilerplate * * Made by QuJun * 2017/01/10 */ //table2excel ...
 - Cherry.chen window.clipboardData实现剪切板操作总结 (好像只有ie好用)
			
window.clipboardData的作用是在页面上将需要的东西复制到剪贴板上,提供了对于预定义的剪贴板格式的访问,以便在编辑操作中使用. 三个方法 (1)clearData(sDataForma ...