[NOI2010]海拔(最小割)
题目描述
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#define N 502
#define mm make_pair
using namespace std;
priority_queue<pair<int,int> >q;
bool vis[N*N];
int id[N][N],dis[N*N],tot,head[N*N],n,top;
inline int rd(){
int x=;char c=getchar();bool f=;
while(!isdigit(c)){if(c=='-')f=;c=getchar();}
while(isdigit(c)){x=(x<<)+(x<<)+(c^);c=getchar();}
return f?-x:x;
}
struct edge{int n,to,l;}e[N*N*];
inline void add(int u,int v,int l){
e[++tot].n=head[u];e[tot].to=v;head[u]=tot;e[tot].l=l;
}
int main(){
n=rd();int x;
for(int i=;i<=n;++i)for(int j=;j<=n;++j)id[i][j]=++top;top++;
for(int i=;i<=n;++i)id[i][]=id[n+][i]=top;
// for(int i=1;i<=n;++i)id[0][i]=id[i][n+1]=top;
for(int i=;i<=n+;++i)
for(int j=;j<=n;++j){
x=rd();add(id[i-][j],id[i][j],x);
}
for(int i=;i<=n;++i)
for(int j=;j<=n+;++j){
x=rd();add(id[i][j],id[i][j-],x);
}
for(int i=;i<=n+;++i)
for(int j=;j<=n;++j){
x=rd();add(id[i][j],id[i-][j],x);
}
for(int i=;i<=n;++i)
for(int j=;j<=n+;++j){
x=rd();add(id[i][j-],id[i][j],x);
}
memset(dis,0x3f,sizeof(dis));dis[]=;
q.push(mm(,));
while(!q.empty()){
int u=q.top().second;q.pop();
if(vis[u])continue;vis[u]=;
for(int i=head[u];i;i=e[i].n){
int v=e[i].to;
if(dis[v]>dis[u]+e[i].l){
dis[v]=dis[u]+e[i].l;
q.push(mm(-dis[v],v));
}
}
}
printf("%d",dis[top]);
return ;
}
[NOI2010]海拔(最小割)的更多相关文章
- BZOJ.2007.[NOI2010]海拔(最小割 对偶图最短路)
题目链接 想一下能猜出,最优解中海拔只有0和1,且海拔相同的点都在且只在1个连通块中. 这就是个平面图最小割.也可以转必须转对偶图最短路,不然只能T到90分了..边的方向看着定就行. 不能忽略回去的边 ...
- 【bzoj2007】[Noi2010]海拔 最小割+对偶图+最短路
题目描述 YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见,可以将YT市看作一个正方形,每一个区域也可看作一个正方形.从而,YT城市中包括(n+1)×(n+1)个交 ...
- bzoj 2007 [Noi2010]海拔——最小割转最短路
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2007 一个点的高度一定不是0就是1.答案一定形如一个左上角的连通块全是0的点.一个右下角的连 ...
- [NOI2010]海拔——最小割+对偶图
题目链接 SOLUTION 想一下最优情况下肯定让平路或下坡尽量多,于是不难想到这样构图:包括左上角的一部分全部为\(0\),包括右下角的一部分全部为\(1\),于是现在问题转化为求那个分界线是什么. ...
- 【BZOJ-2007】海拔 最小割 (平面图转对偶图 + 最短路)
2007: [Noi2010]海拔 Time Limit: 20 Sec Memory Limit: 552 MBSubmit: 2095 Solved: 1002[Submit][Status] ...
- B20J_2007_[Noi2010]海拔_平面图最小割转对偶图+堆优化Dij
B20J_2007_[Noi2010]海拔_平面图最小割转对偶图+堆优化Dij 题意:城市被东西向和南北向的主干道划分为n×n个区域.城市中包括(n+1)×(n+1)个交叉路口和2n×(n+1)条双向 ...
- 【BZOJ2007】【NOI2010】海拔(最小割,平面图转对偶图,最短路)
[BZOJ2007][NOI2010]海拔(最小割,平面图转对偶图,最短路) 题面 BZOJ 洛谷 Description YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域. ...
- 【NOI2010】海拔【平面图最小割】
[问题描写叙述] YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见.能够将YT市看作 一个正方形,每个区域也可看作一个正方形.从而.YT城市中包含(n+1)×(n+ ...
- P2046 [NOI2010]海拔 平面图转对偶图(最小割-》最短路)
$ \color{#0066ff}{ 题目描述 }$ YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见,可以将YT市看作 一个正方形,每一个区域也可看作一个正方形. ...
随机推荐
- MySQL之数据导入导出
日常开发中,经常会涉及到对于数据库中数据的导入与导出操作,格式也有很多: TXT,CSV,XLS,SQL等格式,所以,在此总结一下,省的总是百度查询. 一 导出 1) 常用的方式就是使用现成的工具例如 ...
- h5 文件下载
一.a 标签 移动端不支持 onDownFile= (url, filename) => { const downUrl = `http://10.1.109.123:19092/down/to ...
- zookeeper的安装和启动教程
zookeeper的安装和启动 zookeeper安装包所在目录: 上传文件到虚拟机.现在本地新建一个目录setup,将zookeeper压缩包复制进去. ALT+P打开一个标签,操作如下put命令. ...
- C# Note28: Dispatcher类
在项目中也是经常用到: 刚见到它时,你会想:为什么不直接使用System.Windows命名空间下的MessageBox类,何必要这么麻烦?(认真分析看它做了什么,具体原因下面解释) 主要介绍的方法: ...
- github 操作
https://www.cnblogs.com/cxk1995/p/5800196.html 1在已有的GitHub账号下创建项目. 2将GitHub项目克隆到本地. git clone https ...
- spring boot session error
Error starting ApplicationContext. To display the conditions report re-run your application with 'de ...
- lombok标签之@Data @AllArgsConstructor @@NoArgsConstructor -如何去除get,set方法。@Data注解和如何使用,lombok
在代码中我们可以只加上标签@Data 而不用get,set方法: val : 和 scala 中 val 同名, 可以在运行时确定类型; @NonNull : 注解在参数上, 如果该类参数为 null ...
- easyui datagrid动态修改editor时动态绑定combobox的数据
需求在 datagrid 编辑框中开启一个combobox ,但是里面的数据需要开启的时候才会知道,数据会根据其他因数变更 参考原文 :http://blog.csdn.net/donggua369 ...
- easyui combobox 在datagrid中动态加载数据
场景:datagrid 中用编辑框修改数据,有一个列使用的combobox 在可编辑的时候需要动态绑定数据,这个数据是在根据其他条件可变的 思路:在每次开启编辑框的时候动态绑定数据, datagri ...
- HTTP协议【详解】——经典面试题
http请求由三部分组成,分别是:请求行.消息报头.请求正文 HTTP(超文本传输协议)是一个基于请求与响应模式的.无状态的.应用层的协议,常基于TCP的连接方式,HTTP1.1版本中给出一种持续连接 ...