题目描述

一年一度的圣诞节快要来到了。每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物。不同的人物在小E
心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多。小E从商店中购买了n件礼物,打算送给m个人
,其中送给第i个人礼物数量为wi。请你帮忙计算出送礼物的方案数(两个方案被认为是不同的,当且仅当存在某
个人在这两种方案中收到的礼物不同)。由于方案数可能会很大,你只需要输出模P后的结果。

输入

输入的第一行包含一个正整数P,表示模;
第二行包含两个整整数n和m,分别表示小E从商店购买的礼物数和接受礼物的人数;
以下m行每行仅包含一个正整数wi,表示小E要送给第i个人的礼物数量。

输出

若不存在可行方案,则输出“Impossible”,否则输出一个整数,表示模P后的方案数。

样例输入

100
4 2
1
2

样例输出

12
【样例说明】
下面是对样例1的说明。
以“/”分割,“/”前后分别表示送给第一个人和第二个人的礼物编号。12种方案详情如下:
1/23 1/24 1/34
2/13 2/14 2/34
3/12 3/14 3/24
4/12 4/13 4/23
【数据规模和约定】
设P=p1^c1 * p2^c2 * p3^c3 * … *pt ^ ct,pi为质数。
对于100%的数据,1≤n≤109,1≤m≤5,1≤pi^ci≤10^5。
 
如果$\sum w_{i}>n$显然无解,如果$\sum w_{i}<n$可以将最后剩下那些礼物看作给第$m+1$个人。那么答案就是$C_{n}^{w_{1}}*C_{n-w_{1}}^{w_{2}}*...*C_{w_{m+1}}^{w_{m+1}}$,展开之后就是$\frac{n!}{(w_{1})!(w_{2})!...(w_{m+1})!}$,因为模数不一定是质数,所以用扩展卢卡斯求一下即可。

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
ll n,P;
int m;
ll w[10];
ll quick(ll x,ll y,ll mod)
{
ll res=1ll;
while(y)
{
if(y&1)
{
res=res*x%mod;
}
x=x*x%mod;
y>>=1;
}
return res;
}
ll find(ll n,ll p,ll mod)
{
if(!n)
{
return 1ll;
}
ll res=1ll;
for(ll i=2;i<=mod;i++)
{
if(i%p)
{
res*=i,res%=mod;
}
}
res=quick(res,n/mod,mod);
for(ll i=2;i<=n%mod;i++)
{
if(i%p)
{
res*=i,res%=mod;
}
}
return res*find(n/p,p,mod)%mod;
}
ll inv(ll n,ll mod,ll p)
{
ll phi=mod-(mod/p);
return quick(n,phi-1,mod);
}
ll CRT(ll b,ll mod,ll p)
{
return b*inv(P/mod,mod,p)%P*(P/mod)%P;
}
ll C(ll n,int m,ll p,ll mod)
{
ll res=find(n,p,mod);
ll k=0;
for(ll i=n;i;i/=p)
{
k+=i/p;
}
for(int i=1;i<=m;i++)
{
res*=inv(find(w[i],p,mod),mod,p),res%=mod;
for(ll j=w[i];j;j/=p)
{
k-=j/p;
}
}
return res*quick(p,k,mod)%mod;
}
ll ex_lucas(ll n,int m)
{
ll res=0;
ll sum=P;
ll mod;
for(int i=2;1ll*i*i<=P;i++)
{
if(sum%i==0)
{
mod=1ll;
while(sum%i==0)
{
mod*=i;
sum/=i;
}
res+=CRT(C(n,m,i,mod),mod,i),res%=P;
}
}
if(sum!=1)
{
res+=CRT(C(n,m,sum,sum),sum,sum),res%=P;
}
return res;
}
int main()
{
scanf("%lld",&P);
scanf("%lld%d",&n,&m);
ll sum=n;
for(int i=1;i<=m;i++)
{
scanf("%lld",&w[i]);
sum-=w[i];
}
if(sum<0)
{
printf("Impossible");
return 0;
}
w[++m]=sum;
printf("%lld",ex_lucas(n,m));
}

BZOJ2142礼物——扩展卢卡斯的更多相关文章

  1. bzoj2142 礼物——扩展卢卡斯定理

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2142 前几天学了扩展卢卡斯定理,今天来磕模板! 这道题式子挺好推的(连我都自己推出来了) , ...

  2. Luogu P2183 [国家集训队]礼物 扩展卢卡斯+组合数

    好吧学长说是板子...学了之后才发现就是板子qwq 题意:求$ C_n^{w_1}*C_{n-w_1}^{w_2}*C_{n-w_1-w_2}^{w_3}*...\space mod \space P ...

  3. [BZOJ2142]礼物(扩展Lucas)

    2142: 礼物 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2286  Solved: 1009[Submit][Status][Discuss] ...

  4. BZOJ2142 礼物 扩展lucas 快速幂 数论

    原文链接http://www.cnblogs.com/zhouzhendong/p/8110015.html 题目传送门 - BZOJ2142 题意概括 小E购买了n件礼物,送给m个人,送给第i个人礼 ...

  5. [bzoj2142]礼物(扩展lucas定理+中国剩余定理)

    题意:n件礼物,送给m个人,每人的礼物数确定,求方案数. 解题关键:由于模数不是质数,所以由唯一分解定理, $\bmod  = p_1^{{k_1}}p_2^{{k_2}}......p_s^{{k_ ...

  6. P4720【模板】扩展卢卡斯,P2183 礼物

    扩展卢卡斯定理 最近光做模板了 想了解卢卡斯定理的去这里,那题也有我的题解 然而这题和卢卡斯定理并没有太大关系(雾 但是,首先要会的是中国剩余定理和exgcd 卢卡斯定理用于求\(n,m\)大,但模数 ...

  7. 【学习笔记】扩展卢卡斯定理 exLucas

    引子 求 \[C_n^m\ \text{mod}\ p \] 不保证 \(p\) 是质数. 正文 对于传统的 Lucas 定理,必须要求 \(p\) 是质数才行.若 \(p\) 不一定是质数,则需要扩 ...

  8. 卢卡斯定理&扩展卢卡斯定理

    卢卡斯定理 求\(C_m^n~mod~p\) 设\(m={a_0}^{p_0}+{a_1}^{p_1}+\cdots+{a_k}^{p_k},n={b_0}^{p_0}+{b_1}^{p_1}+\cd ...

  9. 洛谷P4720 【模板】扩展卢卡斯

    P4720 [模板]扩展卢卡斯 题目背景 这是一道模板题. 题目描述 求 C(n,m)%P 其中 C 为组合数. 输入输出格式 输入格式: 一行三个整数 n,m,p ,含义由题所述. 输出格式: 一行 ...

随机推荐

  1. babel-preset-env使用指南

    文章概览 babel-preset-env是非常重要且常用的一个插件预设,掌握它的用法以及实现原理非常有必要. 本文主要内容包括:babel-preset-env是什么.入门实例.如何配置以支持特定版 ...

  2. flask使用基础

    1.安装 pip install Flask 基本依赖库: jinja2:实现对模板的处理 werkzeug:本质是socket服务器,用于接收http请求,并对请求进行预处理,然后触发Flaks框架 ...

  3. vue特殊属性 key ref slot

    1.key 当使用key时,必须设置兄弟元素唯一的key,当key排列顺序变化时,兄弟元素会重新排列,而当key的值变化时,这个元素会被重新渲染. 有相同父元素的子元素必须有独特的 key.重复的 k ...

  4. Stochastic Optimization of PCA with Capped MSG

    目录 Problem Matrix Stochastic Gradient 算法(MSG) 步骤二(单次迭代) 单步SVD \(project()\)算法 \(rounding()\) 从这里回溯到此 ...

  5. web网站css,js更新后客户浏览器缓存问题,需要刷新才能正常展示的解决办法

    问题描述 最近将公司官网样式进行了调整,部署到服务器后访问发现页面展示不正常,但是刷新之后就会展示正常. 问题分析 研究之后发现可能的原因有 css文件过大,加载缓慢 本地缓存问题,虽然服务器修改了c ...

  6. RestTemplete

    RestTemplete是由spring提供的,可以用来模拟浏览器进行服务调用的封装好的Api,和Apache 的HttpClient功能相同,在分布式系统中可以用来服务之间的调用. 开发步骤: 1. ...

  7. 我的第一个Go web程序 纪念一下

    参考Go web编程,很简单的程序: 大致的步骤: 绑定ip和端口 绑定对应的处理器或者处理器函数,有下面两种选择,选择一种即可监听ip及端口 处理器: 定义一个struct结构体 然后让这个结构体实 ...

  8. Svn基本操作

    日常开发中使用到的Svn基本操作 svn      https://tortoisesvn.net/ https://www.visualsvn.com/server/download/   1. 检 ...

  9. Oracle创建'数据库'三步走

    --创建表空间 create tablespace waterboss datafile 'd:\waterboss.dbf' size 100m autoextend on next 10m; -- ...

  10. 【开讲啦】20181029 oracle教学笔记

    --创建表空间 create tablespace waterboss--表空间名称 datafile 'd:\waterboss.dbf'--用于设置物理文件名称 size 100m--用于设置表空 ...