【java排序】 归并排序算法、堆排序算法
一、归并排序算法
基本思想:
归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。
归并排序示例:

合并方法:
设r[i…n]由两个有序子表r[i…m]和r[m+1…n]组成,两个子表长度分别为n-i +1、n-m。
- j=m+1;k=i;i=i; //置两个子表的起始下标及辅助数组的起始下标
- 若i>m 或j>n,转⑷ //其中一个子表已合并完,比较选取结束
- //选取r[i]和r[j]较小的存入辅助数组rf
如果r[i]<r[j],rf[k]=r[i]; i++; k++; 转⑵
否则,rf[k]=r[j]; j++; k++; 转⑵ - //将尚未处理完的子表中元素存入rf
如果i<=m,将r[i…m]存入rf[k…n] //前一子表非空
如果j<=n , 将r[j…n] 存入rf[k…n] //后一子表非空 - 合并结束。
算法实现:

/**
* 归并排序
* 简介:将两个(或两个以上)有序表合并成一个新的有序表 即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列
* 时间复杂度为O(nlogn)
* 稳定排序方式
* @param nums 待排序数组
* @return 输出有序数组
*/
public static int[] sort(int[] nums, int low, int high) {
int mid = (low + high) / 2;
if (low < high) {
// 左边
sort(nums, low, mid);
// 右边
sort(nums, mid + 1, high);
// 左右归并
merge(nums, low, mid, high);
}
return nums;
} /**
* 将数组中low到high位置的数进行排序
* @param nums 待排序数组
* @param low 待排的开始位置
* @param mid 待排中间位置
* @param high 待排结束位置
*/
public static void merge(int[] nums, int low, int mid, int high) {
int[] temp = new int[high - low + 1];
int i = low;// 左指针
int j = mid + 1;// 右指针
int k = 0; // 把较小的数先移到新数组中
while (i <= mid && j <= high) {
if (nums[i] < nums[j]) {
temp[k++] = nums[i++];
} else {
temp[k++] = nums[j++];
}
} // 把左边剩余的数移入数组
while (i <= mid) {
temp[k++] = nums[i++];
} // 把右边边剩余的数移入数组
while (j <= high) {
temp[k++] = nums[j++];
} // 把新数组中的数覆盖nums数组
for (int k2 = 0; k2 < temp.length; k2++) {
nums[k2 + low] = temp[k2];
}
}

二、堆排序算法
1、基本思想:
堆排序是一种树形选择排序,是对直接选择排序的有效改进。
堆的定义下:具有n个元素的序列 (h1,h2,...,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1) (i=1,2,...,n/2)时称之为堆。在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。完全二 叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。
思想:初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个 堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对 它们作交换,最后得到有n个节点的有序序列。从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函 数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。
2、实例
初始序列:46,79,56,38,40,84
建堆:

交换,从堆中踢出最大数

依次类推:最后堆中剩余的最后两个结点交换,踢出一个,排序完成。
3.算法实现:
public class HeapSort {
public static void main(String[] args) {
int[] a={49,38,65,97,76,13,27,49,78,34,12,64};
int arrayLength=a.length;
//循环建堆
for(int i=0;i<arrayLength-1;i++){
//建堆
buildMaxHeap(a,arrayLength-1-i);
//交换堆顶和最后一个元素
swap(a,0,arrayLength-1-i);
System.out.println(Arrays.toString(a));
}
}
//对data数组从0到lastIndex建大顶堆
public static void buildMaxHeap(int[] data, int lastIndex){
//从lastIndex处节点(最后一个节点)的父节点开始
for(int i=(lastIndex-1)/2;i>=0;i--){
//k保存正在判断的节点
int k=i;
//如果当前k节点的子节点存在
while(k*2+1<=lastIndex){
//k节点的左子节点的索引
int biggerIndex=2*k+1;
//如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在
if(biggerIndex<lastIndex){
//若果右子节点的值较大
if(data[biggerIndex]<data[biggerIndex+1]){
//biggerIndex总是记录较大子节点的索引
biggerIndex++;
}
}
//如果k节点的值小于其较大的子节点的值
if(data[k]<data[biggerIndex]){
//交换他们
swap(data,k,biggerIndex);
//将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值
k=biggerIndex;
}else{
break;
}
}
}
}
//交换
private static void swap(int[] data, int i, int j) {
int tmp=data[i];
data[i]=data[j];
data[j]=tmp;
}
}
【java排序】 归并排序算法、堆排序算法的更多相关文章
- Javascript中的冒泡排序,插入排序,选择排序,快速排序,归并排序,堆排序 算法性能分析
阿里面试中有一道题是这样的: 请用JavaScript语言实现 sort 排序函数,要求:sort([5, 100, 6, 3, -12]) // 返回 [-12, 3, 5, 6, 100],如果你 ...
- 排序系列 之 堆排序算法 —— Java实现
基本概念: 二叉堆是完全二叉树或者是近似完全二叉树. 当父结点的键值总是大于或等于任何一个子节点的键值时为最大堆. 当父结点的键值总是小于或等于任何一个子节点的键值时为最小堆. 一般将二叉堆简称 ...
- STL_算法_Heap算法(堆排)(精)
C++ Primer 学习中. . . 简单记录下我的学习过程 (代码为主) /***************************************** STL-算法--Heap算法 堆排序 ...
- 必须知道的八大种排序算法【java实现】(三) 归并排序算法、堆排序算法详解
一.归并排序算法 基本思想: 归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的.然后再把有序子序列合并为整体有序序列. 归并 ...
- java排序算法(九):归并排序
java排序算法(九):归并排序
- java排序算法(三):堆排序
java排序算法(三)堆排序 堆积排序(HeapSort)是指利用堆积树这种结构所设计的排序算法,可以利用数组的特点快速定位指定索引的元素.堆排序是不稳定的排序方法.辅助空间为O(1).最坏时间复杂度 ...
- 8种Java排序算法整理
package org.hbz.test; import java.util.ArrayList; import java.util.Arrays; import java.util.List; im ...
- java排序算法(一):概述
java排序算法(一)概述 排序是程序开发中一种非常常见的操作,对一组任意的数据元素(活记录)经过排序操作后,就可以把它们变成一组按关键字排序的一组有序序列 对一个排序的算法来说,一般从下面三个方面来 ...
- java排序算法(四):冒泡排序
java排序算法(四):冒泡排序 冒泡排序是计算机的一种排序方法,它的时间复杂度是o(n^2),虽然不及堆排序.快速排序o(nlogn,底数为2).但是有两个优点 1.编程复杂度很低.很容易写出代码 ...
随机推荐
- 高博-《视觉SLAM十四讲》
0 讲座 (1)SLAM定义 对比雷达传感器和视觉传感器的优缺点(主要介绍视觉SLAM) 单目:不知道尺度信息 双目:知道尺度信息,但测量范围根据预定的基线相关 RGBD:知道深度信息,但是深度信息对 ...
- CDialog
对话框和对话框类CDialog 对话框经常被使用,因为对话框可以从模板创建,而对话框模板是可以使用资源编辑器方便地进行编辑的. 模式和无模式对话框 对话框分两种类型,模式对话框和无模式对话框. 模式对 ...
- genymotion无法连接相机问题
genymotion模拟器即时打开了相机的开关,也无法连接到相机.这是因为其他进程占用了相机,虚拟设备无法获得,可以尝试: 1.不关闭模拟器,重启adt的Eclipse 2.重启ADB,adb kil ...
- Discoverer Table
http://www.cnblogs.com/fandychen/p/3182826.html EUL4_BAS Table gives list of Business Areas EUL4_OBJ ...
- navigationController背景图,文字,事件定义
//设置背景图片 [self.navigationController.navigationBar setBackgroundImage:imag forBarMetrics:UIBarMetrics ...
- sql 中如何查询某一列的数据在另一个表中有没有?
假设表table1,列a,表table2,列bselect a from table1where a not in(select b from table2)
- c# 协变与抗变
定义 协变:与原始类型转换方向相同的可变性称为协变. 抗变:与派生类型转换方向相同的可变性称为抗变. 补充: 参数是协变的,可以使用派生类对象传入需要基类参数的方法,反之不行 返回值是抗变的,不能使用 ...
- [5.19 线下活动]Docker Meetup杭州站—拥抱Kubernetes,容器深度实践
对本次线下活动感兴趣的朋友,欢迎点击此处报名,领取免费票. 今年3月,Docker刚刚过完5岁生日,五年期间,Docker也逐渐在技术和实践方面趋于成熟,更是在去年年底主动拥抱Kubernetes. ...
- Flask 中的 Response
1.Flask中的HTTPResponse @app.route("/") # app中的路由route装饰器 def index(): # 视图函数 return "I ...
- 北大POJ题库使用指南
原文地址:北大POJ题库使用指南 北大ACM题分类主流算法: 1.搜索 //回溯 2.DP(动态规划)//记忆化搜索 3.贪心 4.图论 //最短路径.最小生成树.网络流 5.数论 //组合数学(排列 ...