【java排序】 归并排序算法、堆排序算法
一、归并排序算法
基本思想:
归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。
归并排序示例:
合并方法:
设r[i…n]由两个有序子表r[i…m]和r[m+1…n]组成,两个子表长度分别为n-i +1、n-m。
- j=m+1;k=i;i=i; //置两个子表的起始下标及辅助数组的起始下标
- 若i>m 或j>n,转⑷ //其中一个子表已合并完,比较选取结束
- //选取r[i]和r[j]较小的存入辅助数组rf
如果r[i]<r[j],rf[k]=r[i]; i++; k++; 转⑵
否则,rf[k]=r[j]; j++; k++; 转⑵ - //将尚未处理完的子表中元素存入rf
如果i<=m,将r[i…m]存入rf[k…n] //前一子表非空
如果j<=n , 将r[j…n] 存入rf[k…n] //后一子表非空 - 合并结束。
算法实现:

/**
* 归并排序
* 简介:将两个(或两个以上)有序表合并成一个新的有序表 即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列
* 时间复杂度为O(nlogn)
* 稳定排序方式
* @param nums 待排序数组
* @return 输出有序数组
*/
public static int[] sort(int[] nums, int low, int high) {
int mid = (low + high) / 2;
if (low < high) {
// 左边
sort(nums, low, mid);
// 右边
sort(nums, mid + 1, high);
// 左右归并
merge(nums, low, mid, high);
}
return nums;
} /**
* 将数组中low到high位置的数进行排序
* @param nums 待排序数组
* @param low 待排的开始位置
* @param mid 待排中间位置
* @param high 待排结束位置
*/
public static void merge(int[] nums, int low, int mid, int high) {
int[] temp = new int[high - low + 1];
int i = low;// 左指针
int j = mid + 1;// 右指针
int k = 0; // 把较小的数先移到新数组中
while (i <= mid && j <= high) {
if (nums[i] < nums[j]) {
temp[k++] = nums[i++];
} else {
temp[k++] = nums[j++];
}
} // 把左边剩余的数移入数组
while (i <= mid) {
temp[k++] = nums[i++];
} // 把右边边剩余的数移入数组
while (j <= high) {
temp[k++] = nums[j++];
} // 把新数组中的数覆盖nums数组
for (int k2 = 0; k2 < temp.length; k2++) {
nums[k2 + low] = temp[k2];
}
}

二、堆排序算法
1、基本思想:
堆排序是一种树形选择排序,是对直接选择排序的有效改进。
堆的定义下:具有n个元素的序列 (h1,h2,...,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1) (i=1,2,...,n/2)时称之为堆。在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。完全二 叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。
思想:初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个 堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对 它们作交换,最后得到有n个节点的有序序列。从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函 数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。
2、实例
初始序列:46,79,56,38,40,84
建堆:
交换,从堆中踢出最大数
依次类推:最后堆中剩余的最后两个结点交换,踢出一个,排序完成。
3.算法实现:
public class HeapSort {
public static void main(String[] args) {
int[] a={49,38,65,97,76,13,27,49,78,34,12,64};
int arrayLength=a.length;
//循环建堆
for(int i=0;i<arrayLength-1;i++){
//建堆
buildMaxHeap(a,arrayLength-1-i);
//交换堆顶和最后一个元素
swap(a,0,arrayLength-1-i);
System.out.println(Arrays.toString(a));
}
}
//对data数组从0到lastIndex建大顶堆
public static void buildMaxHeap(int[] data, int lastIndex){
//从lastIndex处节点(最后一个节点)的父节点开始
for(int i=(lastIndex-1)/2;i>=0;i--){
//k保存正在判断的节点
int k=i;
//如果当前k节点的子节点存在
while(k*2+1<=lastIndex){
//k节点的左子节点的索引
int biggerIndex=2*k+1;
//如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在
if(biggerIndex<lastIndex){
//若果右子节点的值较大
if(data[biggerIndex]<data[biggerIndex+1]){
//biggerIndex总是记录较大子节点的索引
biggerIndex++;
}
}
//如果k节点的值小于其较大的子节点的值
if(data[k]<data[biggerIndex]){
//交换他们
swap(data,k,biggerIndex);
//将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值
k=biggerIndex;
}else{
break;
}
}
}
}
//交换
private static void swap(int[] data, int i, int j) {
int tmp=data[i];
data[i]=data[j];
data[j]=tmp;
}
}
【java排序】 归并排序算法、堆排序算法的更多相关文章
- Javascript中的冒泡排序,插入排序,选择排序,快速排序,归并排序,堆排序 算法性能分析
阿里面试中有一道题是这样的: 请用JavaScript语言实现 sort 排序函数,要求:sort([5, 100, 6, 3, -12]) // 返回 [-12, 3, 5, 6, 100],如果你 ...
- 排序系列 之 堆排序算法 —— Java实现
基本概念: 二叉堆是完全二叉树或者是近似完全二叉树. 当父结点的键值总是大于或等于任何一个子节点的键值时为最大堆. 当父结点的键值总是小于或等于任何一个子节点的键值时为最小堆. 一般将二叉堆简称 ...
- STL_算法_Heap算法(堆排)(精)
C++ Primer 学习中. . . 简单记录下我的学习过程 (代码为主) /***************************************** STL-算法--Heap算法 堆排序 ...
- 必须知道的八大种排序算法【java实现】(三) 归并排序算法、堆排序算法详解
一.归并排序算法 基本思想: 归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的.然后再把有序子序列合并为整体有序序列. 归并 ...
- java排序算法(九):归并排序
java排序算法(九):归并排序
- java排序算法(三):堆排序
java排序算法(三)堆排序 堆积排序(HeapSort)是指利用堆积树这种结构所设计的排序算法,可以利用数组的特点快速定位指定索引的元素.堆排序是不稳定的排序方法.辅助空间为O(1).最坏时间复杂度 ...
- 8种Java排序算法整理
package org.hbz.test; import java.util.ArrayList; import java.util.Arrays; import java.util.List; im ...
- java排序算法(一):概述
java排序算法(一)概述 排序是程序开发中一种非常常见的操作,对一组任意的数据元素(活记录)经过排序操作后,就可以把它们变成一组按关键字排序的一组有序序列 对一个排序的算法来说,一般从下面三个方面来 ...
- java排序算法(四):冒泡排序
java排序算法(四):冒泡排序 冒泡排序是计算机的一种排序方法,它的时间复杂度是o(n^2),虽然不及堆排序.快速排序o(nlogn,底数为2).但是有两个优点 1.编程复杂度很低.很容易写出代码 ...
随机推荐
- HDU 3177 Crixalis's Equipment (贪心,差值)
题意:判断 n 件物品是否可以搬进洞里,每件物品有实际体积A和移动时的额外体积 B . 析:第一反应就是贪心,一想是不是按B从大到小,然后一想,不对,比如体积是20,第一个 是A=11, B=19.第 ...
- GitBash入门
转载自:http://www.cnblogs.com/randomsteps/p/5415116.html 作为一个初学者,我是跟着廖学峰老师的官方博客学习,这里只是做个笔记,哈哈,关于git的历史. ...
- Series转成list
直接list(series)就可以的 最佳的方式是将列表转换成Python中的科学计算包numpy包的array类型,再进行加减. 1 2 3 4 import numpy as np a = np. ...
- 75. Sort Colors(颜色排序) from LeetCode
75. Sort Colors 给定一个具有红色,白色或蓝色的n个对象的数组,将它们就地 排序,使相同颜色的对象相邻,颜色顺序为红色,白色和蓝色. 这里,我们将使用整数0,1和2分别表示红色, ...
- Windows 下安装ReText
打算使用MarkDown了,群友推荐使用ReText,基于Python的,同时依赖了Python的几个包,通过easystall可以方便地安装,同时制作了快捷启动方式,网上找了篇文章以备忘. Inst ...
- noip第11课作业
1. 数字比较 定义一个函数check(n,d),让它返回一个布尔值,如果数字d在正整数n的某位中出现则返回true,否则返回false. 例如:check(325719,3)==true:ch ...
- 图片捕获工具driftnet
driftnet是一款简单而使用的图片捕获工具,可以很方便的在网络数据包中抓取图片.该工具可以实时和离线捕获指定数据包中是图片,当然在kali里是有的. 在我之前的一篇博文<kali下搭建WiF ...
- 关于java的volatile关键字与线程栈的内容以及单例的DCL
用volatile修饰的变量,线程在每次使用变量的时候,都会读取变量修改后的最新的值.volatile很容易被误用,用来进行原子性操作. package com.guangshan.test; pub ...
- [Openwrt 项目开发笔记]:Openwrt必要设置(二)
[Openwrt项目开发笔记]系列文章传送门:http://www.cnblogs.com/double-win/p/3888399.html 正文: 前面的两篇blog中,我将如何搭建Openwrt ...
- MYC编译器源码之语法分析
MyC编译器采用自顶向下的方法进行语法解析,这种语法解析方式,一般是从最左边的Token开始,然后自顶向下看哪一条语法规则可能包含这个Token,如果包含这个Token,则自左向右根据这条语法规则逐一 ...