There are N piles of stones arranged in a row.  The i-th pile has stones[i] stones.

move consists of merging exactly K consecutive piles into one pile, and the cost of this move is equal to the total number of stones in these K piles.

Find the minimum cost to merge all piles of stones into one pile.  If it is impossible, return -1.

Example 1:

Input: stones = [3,2,4,1], K = 2
Output: 20
Explanation:
We start with [3, 2, 4, 1].
We merge [3, 2] for a cost of 5, and we are left with [5, 4, 1].
We merge [4, 1] for a cost of 5, and we are left with [5, 5].
We merge [5, 5] for a cost of 10, and we are left with [10].
The total cost was 20, and this is the minimum possible.

Example 2:

Input: stones = [3,2,4,1], K = 3
Output: -1
Explanation: After any merge operation, there are 2 piles left, and we can't merge anymore. So the task is impossible.

Example 3:

Input: stones = [3,5,1,2,6], K = 3
Output: 25
Explanation:
We start with [3, 5, 1, 2, 6].
We merge [5, 1, 2] for a cost of 8, and we are left with [3, 8, 6].
We merge [3, 8, 6] for a cost of 17, and we are left with [17].
The total cost was 25, and this is the minimum possible.

Note:

  • 1 <= stones.length <= 30
  • 2 <= K <= 30
  • 1 <= stones[i] <= 100

Approach #1: DP. [C++]

class Solution {
public:
int mergeStones(vector<int>& stones, int K) {
int n = stones.size();
if ((n-1) % (K-1)) return -1; const int kInf = 1e9 + 7; vector<int> sum(n+1, 0);
for (int i = 0; i < n; ++i)
sum[i+1] = sum[i] + stones[i]; vector<vector<vector<int>>> dp(n+1, vector<vector<int>>(n+1, vector<int>(K+1, kInf))); for (int i = 0; i < n; ++i)
dp[i][i][1] = 0; for (int l = 2; l <= n; ++l) {
for (int i = 0; i <= n - l; ++i) {
int j = i + l - 1;
for (int k = 2; k <= K; ++k) {
for (int m = i; m < j; ++m) {
dp[i][j][k] = min(dp[i][j][k], dp[i][m][1] + dp[m+1][j][k-1]);
}
}
dp[i][j][1] = dp[i][j][K] + sum[j+1] - sum[i];
}
} return dp[0][n-1][1];
}
};

  

Analysis:

Non-overlapping subproblems: min cost of merging subarray A[i]~A[j] into k piles.

dp[i][j][k] : min cost to merge A[i]~A[j] into k piles

Init: dp[i][i][1] = 0 : no cost to merge one into one

Transition:

1. dp[i][j][k] = min(dp[i][m][1] + dp[i][m+1][k-1]}, i <= m < j, 2 <= k <= K

2. dp[i][j][1] = dp[i][j][K] + sum(A[i] ~ A[j])

ans : dp[0][n-1][1] # merge he whole array into one.

Approach #2: DP + Optimization. [Java]

class Solution {
public int mergeStones(int[] stones, int K) {
int n = stones.length;
if ((n-1) % (K-1) != 0) return -1;
int[] prefix = new int[n+1];
for (int i = 0; i < n; ++i)
prefix[i+1] = prefix[i] + stones[i]; int[][] dp = new int[n][n]; for (int l = 2; l <= n; ++l) {
for (int i = 0; i <= n-l; ++i) {
int j = i + l - 1;
dp[i][j] = Integer.MAX_VALUE;
for (int m = i; m < j; m += K - 1)
dp[i][j] = Math.min(dp[i][j], dp[i][m] + dp[m+1][j]);
if ((j-i) % (K-1) == 0)
dp[i][j] += prefix[j+1] - prefix[i];
}
} return dp[0][n-1];
}
}

  

Analysis:

Optimization 1: In order to merge left part into 1 pile, (len - 1) % (K - 1) == 0

++m => m += K-1;

Optimization 2: The number of piles the right part can be merge into can be determined, (len - 1) % (K - 1) + 1. And we need to merge them first before the final merge of left and right.

dp[i][j] : min cost to merge A[i] ~ A[j] to (j-i) % (K-1) + 1 piles

Init: dp[i][i] = 0

dp[i][j] = min(dp[i][m] + dp[m+1][j]} + sum(A[i] ~ A[j]) if (j - i) % (K - 1) == 0

Reference:

https://zxi.mytechroad.com/blog/dynamic-programming/leetcode-1000-minimum-cost-to-merge-stones/

https://leetcode.com/problems/minimum-cost-to-merge-stones/discuss/247567/JavaC%2B%2BPython-DP

1000. Minimum Cost to Merge Stones的更多相关文章

  1. LeetCode 1000. Minimum Cost to Merge Stones

    原题链接在这里:https://leetcode.com/problems/minimum-cost-to-merge-stones/ 题目: There are N piles of stones ...

  2. [LeetCode] Minimum Cost to Merge Stones 混合石子的最小花费

    There are N piles of stones arranged in a row.  The i-th pile has stones[i] stones. A move consists ...

  3. [Swift]LeetCode1000. 合并石头的最低成本 | Minimum Cost to Merge Stones

    There are N piles of stones arranged in a row.  The i-th pile has stones[i] stones. A move consists ...

  4. 动态规划-Minimum Cost to Merge Stones

    2019-07-07 15:48:46 问题描述: 问题求解: 最初看到这个问题的时候第一反应就是这个题目和打破气球的题目很类似. 但是我尝试了使用dp将问题直接转为直接合并到一个堆问题复杂度迅速提高 ...

  5. Leetcode之动态规划(DP)专题-详解983. 最低票价(Minimum Cost For Tickets)

    Leetcode之动态规划(DP)专题-983. 最低票价(Minimum Cost For Tickets) 在一个火车旅行很受欢迎的国度,你提前一年计划了一些火车旅行.在接下来的一年里,你要旅行的 ...

  6. LeetCode 983. Minimum Cost For Tickets

    原题链接在这里:https://leetcode.com/problems/minimum-cost-for-tickets/ 题目: In a country popular for train t ...

  7. Minimum Cost(最小费用最大流)

    Description Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his s ...

  8. POJ 2516 Minimum Cost (费用流)

    题面 Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his sale area ...

  9. POJ 2516 Minimum Cost (网络流,最小费用流)

    POJ 2516 Minimum Cost (网络流,最小费用流) Description Dearboy, a goods victualer, now comes to a big problem ...

随机推荐

  1. PM2使用及介绍

    pm2 是一个带有负载均衡功能的Node应用的进程管理器.当你要把你的独立代码利用全部的服务器上的所有CPU,并保证进程永远都活着,0秒的重载, PM2是完美的.它非常适合IaaS结构,但不要把它用于 ...

  2. Java图形化界面设计——布局管理器之GridBagLayout

    GridBagLayout 不会随着窗口的变化标签随之发生变化,可固定. ---------------------------------------------------------- impo ...

  3. DNA甲基化研究概述

    DNA甲基化研究概述 生信技能树 已关注 2018.01.23 11:43 字数 993 阅读 183评论 0喜欢 1 DNA甲基化(DNA methylation)是最早被研究的重要表观遗传修饰之一 ...

  4. 7. Debug on local machine

    Step 1:

  5. wcf数据推送

    http://www.cnblogs.com/artech/archive/2007/03/02/661969.html

  6. boost 学习(1)

    智能指针的学习 中文教程网站 http://zh.highscore.de/cpp/boost/ 不过代码可能 由于BOOST 版本不同需要稍作修改 scoped_ptr 离开作用域则自动调用类析构函 ...

  7. 【JS】点击页面判断是否安装app并打开,否则跳转下载的方法

    应用场景 App产品在运营推广上有一个需求,就是要求可以让用户在访问我们的推广网页时,就可以判断出这个用户手机上是否安装了我们的App,如果安装了则可以直接在网页上打开,否则就引导用户前往下载.从而形 ...

  8. 一款非常好用的boostrap的验证插件、再也不用自己手写正则表达式和js了

    基于jquery.bootstrap数据验证插件bootstrapValidator教程 bootstrap:能够增加兼容性的强大框架. 因为项目需要数据验证,看bootstrapValidator ...

  9. C#与android连接 SimpleWifi

    有时候 Read时会返回0长度 ----- 当连续2次每读到数据时,建议发个心跳信息,然后单片机给个回复 C# using System; using System.Collections.Gener ...

  10. Fortran 语法之流程控制

    -----------------------