There are N piles of stones arranged in a row.  The i-th pile has stones[i] stones.

move consists of merging exactly K consecutive piles into one pile, and the cost of this move is equal to the total number of stones in these K piles.

Find the minimum cost to merge all piles of stones into one pile.  If it is impossible, return -1.

Example 1:

Input: stones = [3,2,4,1], K = 2
Output: 20
Explanation:
We start with [3, 2, 4, 1].
We merge [3, 2] for a cost of 5, and we are left with [5, 4, 1].
We merge [4, 1] for a cost of 5, and we are left with [5, 5].
We merge [5, 5] for a cost of 10, and we are left with [10].
The total cost was 20, and this is the minimum possible.

Example 2:

Input: stones = [3,2,4,1], K = 3
Output: -1
Explanation: After any merge operation, there are 2 piles left, and we can't merge anymore. So the task is impossible.

Example 3:

Input: stones = [3,5,1,2,6], K = 3
Output: 25
Explanation:
We start with [3, 5, 1, 2, 6].
We merge [5, 1, 2] for a cost of 8, and we are left with [3, 8, 6].
We merge [3, 8, 6] for a cost of 17, and we are left with [17].
The total cost was 25, and this is the minimum possible.

Note:

  • 1 <= stones.length <= 30
  • 2 <= K <= 30
  • 1 <= stones[i] <= 100

Approach #1: DP. [C++]

class Solution {
public:
int mergeStones(vector<int>& stones, int K) {
int n = stones.size();
if ((n-1) % (K-1)) return -1; const int kInf = 1e9 + 7; vector<int> sum(n+1, 0);
for (int i = 0; i < n; ++i)
sum[i+1] = sum[i] + stones[i]; vector<vector<vector<int>>> dp(n+1, vector<vector<int>>(n+1, vector<int>(K+1, kInf))); for (int i = 0; i < n; ++i)
dp[i][i][1] = 0; for (int l = 2; l <= n; ++l) {
for (int i = 0; i <= n - l; ++i) {
int j = i + l - 1;
for (int k = 2; k <= K; ++k) {
for (int m = i; m < j; ++m) {
dp[i][j][k] = min(dp[i][j][k], dp[i][m][1] + dp[m+1][j][k-1]);
}
}
dp[i][j][1] = dp[i][j][K] + sum[j+1] - sum[i];
}
} return dp[0][n-1][1];
}
};

  

Analysis:

Non-overlapping subproblems: min cost of merging subarray A[i]~A[j] into k piles.

dp[i][j][k] : min cost to merge A[i]~A[j] into k piles

Init: dp[i][i][1] = 0 : no cost to merge one into one

Transition:

1. dp[i][j][k] = min(dp[i][m][1] + dp[i][m+1][k-1]}, i <= m < j, 2 <= k <= K

2. dp[i][j][1] = dp[i][j][K] + sum(A[i] ~ A[j])

ans : dp[0][n-1][1] # merge he whole array into one.

Approach #2: DP + Optimization. [Java]

class Solution {
public int mergeStones(int[] stones, int K) {
int n = stones.length;
if ((n-1) % (K-1) != 0) return -1;
int[] prefix = new int[n+1];
for (int i = 0; i < n; ++i)
prefix[i+1] = prefix[i] + stones[i]; int[][] dp = new int[n][n]; for (int l = 2; l <= n; ++l) {
for (int i = 0; i <= n-l; ++i) {
int j = i + l - 1;
dp[i][j] = Integer.MAX_VALUE;
for (int m = i; m < j; m += K - 1)
dp[i][j] = Math.min(dp[i][j], dp[i][m] + dp[m+1][j]);
if ((j-i) % (K-1) == 0)
dp[i][j] += prefix[j+1] - prefix[i];
}
} return dp[0][n-1];
}
}

  

Analysis:

Optimization 1: In order to merge left part into 1 pile, (len - 1) % (K - 1) == 0

++m => m += K-1;

Optimization 2: The number of piles the right part can be merge into can be determined, (len - 1) % (K - 1) + 1. And we need to merge them first before the final merge of left and right.

dp[i][j] : min cost to merge A[i] ~ A[j] to (j-i) % (K-1) + 1 piles

Init: dp[i][i] = 0

dp[i][j] = min(dp[i][m] + dp[m+1][j]} + sum(A[i] ~ A[j]) if (j - i) % (K - 1) == 0

Reference:

https://zxi.mytechroad.com/blog/dynamic-programming/leetcode-1000-minimum-cost-to-merge-stones/

https://leetcode.com/problems/minimum-cost-to-merge-stones/discuss/247567/JavaC%2B%2BPython-DP

1000. Minimum Cost to Merge Stones的更多相关文章

  1. LeetCode 1000. Minimum Cost to Merge Stones

    原题链接在这里:https://leetcode.com/problems/minimum-cost-to-merge-stones/ 题目: There are N piles of stones ...

  2. [LeetCode] Minimum Cost to Merge Stones 混合石子的最小花费

    There are N piles of stones arranged in a row.  The i-th pile has stones[i] stones. A move consists ...

  3. [Swift]LeetCode1000. 合并石头的最低成本 | Minimum Cost to Merge Stones

    There are N piles of stones arranged in a row.  The i-th pile has stones[i] stones. A move consists ...

  4. 动态规划-Minimum Cost to Merge Stones

    2019-07-07 15:48:46 问题描述: 问题求解: 最初看到这个问题的时候第一反应就是这个题目和打破气球的题目很类似. 但是我尝试了使用dp将问题直接转为直接合并到一个堆问题复杂度迅速提高 ...

  5. Leetcode之动态规划(DP)专题-详解983. 最低票价(Minimum Cost For Tickets)

    Leetcode之动态规划(DP)专题-983. 最低票价(Minimum Cost For Tickets) 在一个火车旅行很受欢迎的国度,你提前一年计划了一些火车旅行.在接下来的一年里,你要旅行的 ...

  6. LeetCode 983. Minimum Cost For Tickets

    原题链接在这里:https://leetcode.com/problems/minimum-cost-for-tickets/ 题目: In a country popular for train t ...

  7. Minimum Cost(最小费用最大流)

    Description Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his s ...

  8. POJ 2516 Minimum Cost (费用流)

    题面 Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his sale area ...

  9. POJ 2516 Minimum Cost (网络流,最小费用流)

    POJ 2516 Minimum Cost (网络流,最小费用流) Description Dearboy, a goods victualer, now comes to a big problem ...

随机推荐

  1. 20172325 2017-2018-2 《Java程序设计》第十周学习总结

    20172325 2017-2018-2 <Java程序设计>第十周学习总结 教材学习内容总结 1.集合与数据结构 集合是一种对象 集合按照保存类型来看可以分为两种: (1)同构集合:只能 ...

  2. Codeforces 599C. Day at the Beach 模拟

    Day at the Beach time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  3. Java数据结构和算法(一)概念

    Java数据结构和算法(一)概念 数据结构与算法目录(https://www.cnblogs.com/binarylei/p/10115867.html) 一.逻辑结构 数据之间的相互关系称为逻辑结构 ...

  4. Java 8 新日期时间 API

    Java 8 新日期时间 API 1. LocalDate.LocalTime.LocalDateTime LocalDate.LocalTime.LocalDateTime 实例是不可变的对象,分别 ...

  5. servlet填充Response时,数据转换之content-type

    在Http请求中,我们每天都在使用Content-type来指定不同格式的请求信息,但是却很少有人去全面了解content-type中允许的值有多少,这里将讲解Content-Type的可用值. 1. ...

  6. Mybatis之拦截器原理(jdk动态代理优化版本)

    在介绍Mybatis拦截器代码之前,我们先研究下jdk自带的动态代理及优化 其实动态代理也是一种设计模式...优于静态代理,同时动态代理我知道的有两种,一种是面向接口的jdk的代理,第二种是基于第三方 ...

  7. SQLInjection 靶场配置

    对于渗透,太小型的网站没有太大价值,而大型网站(比如各种电商平台)对于代码审计往往非常严格,新手基本找不到漏洞,而一些比较容易搞掉的站点(政府.gov.各种教育网站.edu或者很多商业中型站点)渗透又 ...

  8. yii2 beforeAction 重定向问题

    不跳转代码:return $this->redirect('http://www.yiichina.com/'); 跳转代码:return $this->redirect('http:// ...

  9. POJ 2728 Desert King (最优比率树)

    题意:有n个村庄,村庄在不同坐标和海拔,现在要对所有村庄供水,只要两个村庄之间有一条路即可,建造水管距离为坐标之间的欧几里德距离,费用为海拔之差,现在要求方案使得费用与距离的比值最小,很显然,这个题目 ...

  10. C#中验证sql语句是否正确(不执行语句)

    SET PARSEONLY检查每个 Transact-SQL 语句的语法并返回任何错误消息,但不编译和执行语句.SET PARSEONLY { ON | OFF }当 SET PARSEONLY 为 ...