普里姆Prim算法介绍
普里姆(Prim)算法,和克鲁斯卡尔算法一样,是用来求加权连通图的最小生成树的算法。
基本思想
对于图G而言,V是所有顶点的集合;现在,设置两个新的集合U和T,其中U用于存放G的最小生成树中的顶点,T存放G的最小生成树中的边。
从所有uЄU,vЄ(V-U) (V-U表示出去U的所有顶点)的边中选取权值最小的边(u, v),将顶点v加入集合U中,将边(u,
v)加入集合T中,如此不断重复,直到U=V为止,最小生成树构造完毕,这时集合T中包含了最小生成树中的所有边。
普里姆算法图解

以上图G4为例,来对普里姆进行演示(从第一个顶点A开始通过普里姆算法生成最小生成树)。

初始状态:V是所有顶点的集合,即V={A,B,C,D,E,F,G};U和T都是空!
第1步:将顶点A加入到U中。
此时,U={A}。
第2步:将顶点B加入到U中。
上一步操作之后,U={A}, V-U={B,C,D,E,F,G};因此,边(A,B)的权值最小。将顶点B添加到U中;此时,U={A,B}。
第3步:将顶点F加入到U中。
上一步操作之后,U={A,B}, V-U={C,D,E,F,G};因此,边(B,F)的权值最小。将顶点F添加到U中;此时,U={A,B,F}。
第4步:将顶点E加入到U中。
上一步操作之后,U={A,B,F}, V-U={C,D,E,G};因此,边(F,E)的权值最小。将顶点E添加到U中;此时,U={A,B,F,E}。
第5步:将顶点D加入到U中。
上一步操作之后,U={A,B,F,E}, V-U={C,D,G};因此,边(E,D)的权值最小。将顶点D添加到U中;此时,U={A,B,F,E,D}。
第6步:将顶点C加入到U中。
上一步操作之后,U={A,B,F,E,D}, V-U={C,G};因此,边(D,C)的权值最小。将顶点C添加到U中;此时,U={A,B,F,E,D,C}。
第7步:将顶点G加入到U中。
上一步操作之后,U={A,B,F,E,D,C}, V-U={G};因此,边(E,G)的权值最小。将顶点G添加到U中;此时,U=V。
此时,最小生成树构造完成!它包括的顶点依次是:A B F E D C G。
普里姆算法的代码说明
以"邻接矩阵"为例对普里姆算法进行说明,对于"邻接表"实现的图在后面会给出相应的源码。
1. 基本定义

// 邻接矩阵
typedef struct _graph
{
char vexs[MAX]; // 顶点集合
int vexnum; // 顶点数
int edgnum; // 边数
int matrix[MAX][MAX]; // 邻接矩阵
}Graph, *PGraph; // 边的结构体
typedef struct _EdgeData
{
char start; // 边的起点
char end; // 边的终点
int weight; // 边的权重
}EData;

Graph是邻接矩阵对应的结构体。
vexs用于保存顶点,vexnum是顶点数,edgnum是边数;matrix则是用于保存矩阵信息的二维数组。例如,matrix[i][j]=1,则表示"顶点i(即vexs[i])"和"顶点j(即vexs[j])"是邻接点;matrix[i][j]=0,则表示它们不是邻接点。
EData是邻接矩阵边对应的结构体。
2. 普里姆算法

#include<stdio.h>
#include<stdlib.h>
#include<malloc.h>
#include<string.h>
#define MAX 100
#define INF (~(0x1<<31))
typedef struct Graph
{
char vexs[MAX];
int vexnum;
int edgnum;
int matrix[MAX][MAX];
} Graph,*PGraph; typedef struct EdgeData
{
char start;
char end;
int weight;
} EData; static int get_position(Graph g,char ch)
{
int i;
for(i=0; i<g.vexnum; i++)
if(g.vexs[i]==ch)
return i;
return -1;
} Graph* create_graph()
{
char vexs[]= {'A','B','C','D','E','F','G'};
int matrix[][7]=
{
{0,12,INF,INF,INF,16,14},
{12,0,10,INF,INF,7,INF},
{INF,10,0,3,5,6,INF},
{INF,INF,3,0,4,INF,INF},
{INF,INF,5,4,0,INF,8},
{16,7,6,INF,2,0,9},
{14,INF,INF,INF,8,9,0}
};
int vlen=sizeof(vexs)/sizeof(vexs[0]);
int i,j;
Graph *pG;
if((pG=(Graph*)malloc(sizeof(Graph)))==NULL)
return NULL;
memset(pG,0,sizeof(pG));
pG->vexnum=vlen;
for(i=0; i<pG->vexnum; i++)
pG->vexs[i]=vexs[i];
for(i=0; i<pG->vexnum; i++)
for(j=0; j<pG->vexnum; j++)
pG->matrix[i][j]=matrix[i][j];
for(i=0; i<pG->vexnum; i++)
{
for(j=0; j<pG->vexnum; j++)
{
if(i!=j&&pG->matrix[i][j]!=INF)
pG->edgnum++;
}
}
pG->edgnum/=2;
return pG;
} void print_graph(Graph G)
{
int i,j;
printf("Matrix Graph: \n");
for(i=0; i<G.vexnum; i++)
{
for(j=0; j<G.vexnum; j++)
printf("%10d ",G.matrix[i][j]);
printf("\n");
}
} EData* get_edges(Graph G)
{
EData *edges;
edges=(EData*)malloc(G.edgnum*sizeof(EData));
int i,j;
int index=0;
for(i=0; i<G.vexnum; i++)
{
for(j=i+1; j<G.vexnum; j++)
{
if(G.matrix[i][j]!=INF)
{
edges[index].start=G.vexs[i];
edges[index].end=G.vexs[j];
edges[index].weight=G.matrix[i][j];
index++;
}
}
}
return edges;
} void prim(Graph G,int start)
{
int min,i,j,k,m,n,sum;
int index=0;
char prim[MAX];
int weight[MAX]; prim[index++]=G.vexs[start]; for(i=0; i<G.vexnum; i++)
weight[i]=G.matrix[start][i];
weight[start]=0; for(i=0; i<G.vexnum; i++)
{
//i用来控制循环的次数,每次加入一个结点,但是因为start已经加入,所以当i为start是跳过
if(start==i)
continue;
j=0;
k=0;
min=INF;
for(k=0; k<G.vexnum; k++)
{
if(weight[k]&&weight[k]<min)
{
min=weight[k];
j=k;
}
}
sum+=min;
prim[index++]=G.vexs[j];
weight[j]=0;
for(k=0; k<G.vexnum; k++)
{
if(weight[k]&&G.matrix[j][k]<weight[k])
weight[k]=G.matrix[j][k];
}
}
// 计算最小生成树的权值
sum = 0;
for (i = 1; i < index; i++)
{
min = INF;
// 获取prims[i]在G中的位置
n = get_position(G, prim[i]);
// 在vexs[0...i]中,找出到j的权值最小的顶点。
for (j = 0; j < i; j++)
{
m = get_position(G, prim[j]);
if (G.matrix[m][n]<min)
min = G.matrix[m][n];
}
sum += min;
}
printf("PRIM(%c)=%d: ", G.vexs[start], sum);
for (i = 0; i < index; i++)
printf("%c ", prim[i]);
printf("\n");
} int main()
{
Graph *pG;
pG=create_graph();
print_graph(*pG);
prim(*pG,0);
}

运行结果:

普里姆Prim算法介绍的更多相关文章
- 图解最小生成树 - 普里姆(Prim)算法
我们在图的定义中说过,带有权值的图就是网结构.一个连通图的生成树是一个极小的连通子图,它含有图中全部的顶点,但只有足以构成一棵树的n-1条边.所谓的最小成本,就是n个顶点,用n-1条边把一个连通图连接 ...
- 普里姆(Prim)算法
/* 普里姆算法的主要思想: 利用二维数组把权值放入,然后找在当前顶点的最小权值,然后走过的路用一个数组来记录 */ # include <stdio.h> typedef char Ve ...
- JS实现最小生成树之普里姆(Prim)算法
最小生成树: 我们把构造连通网的最小代价生成树称为最小生成树.经典的算法有两种,普利姆算法和克鲁斯卡尔算法. 普里姆算法打印最小生成树: 先选择一个点,把该顶点的边加入数组,再按照权值最小的原则选边, ...
- 图的普里姆(Prim)算法求最小生成树
关于图的最小生成树算法------普里姆算法 首先我们先初始化一张图: 设置两个数据结构来分别代表我们需要存储的数据: lowcost[i]:表示以i为终点的边的最小权值,当lowcost[i]=0说 ...
- 图的生成树(森林)(克鲁斯卡尔Kruskal算法和普里姆Prim算法)、以及并查集的使用
图的连通性问题:无向图的连通分量和生成树,所有顶点均由边连接在一起,但不存在回路的图. 设图 G=(V, E) 是个连通图,当从图任一顶点出发遍历图G 时,将边集 E(G) 分成两个集合 T(G) 和 ...
- 最小生成树-普利姆(Prim)算法
最小生成树-普利姆(Prim)算法 最小生成树 概念:将给出的所有点连接起来(即从一个点可到任意一个点),且连接路径之和最小的图叫最小生成树.最小生成树属于一种树形结构(树形结构是一种特殊的图),或者 ...
- 图论---最小生成树----普利姆(Prim)算法
普利姆(Prim)算法 1. 最小生成树(又名:最小权重生成树) 概念:将给出的所有点连接起来(即从一个点可到任意一个点),且连接路径之和最小的图叫最小生成树.最小生成树属于一种树形结构(树形结构是一 ...
- 经典问题----最小生成树(prim普里姆贪心算法)
题目简述:假如有一个无向连通图,有n个顶点,有许多(带有权值即长度)边,让你用在其中选n-1条边把这n个顶点连起来,不漏掉任何一个点,然后这n-1条边的权值总和最小,就是最小生成树了,注意,不可绕成圈 ...
- 最小生成树之Prim(普里姆)算法
关于什么是Prim(普里姆算法)? 在实际生活中,我们常常碰到类似这种一类问题:如果要在n个城市之间建立通信联络网, 则连通n个城市仅仅须要n-1条线路.这时.我们须要考虑这样一个问题.怎样在最节省经 ...
随机推荐
- win7+iis7+asp+.net+php环境配置
一.我们先来配置一下iis: f 1. 点击[開始]->[控制面板]->点击[程序和功能]进入下一步 2. 然后,在左側点击[打开或关闭Windows功能].然后会跳出来一个框 3. 開始 ...
- 使用sed进行文字替换
范式: sed -i "s/查找内容/替换后内容/g" `grep 查找内容 -rl 查找开始路径` 例子: #sed -i "s/abc/ABC/g" `gr ...
- SqlServer 之 系统视图
一.了解系统视图 1. 系统视图:从名字上看就知道,就是存放一些sqlserver系统的一些信息. 2. 存在位置: 下面截图看看,从截图中你可以看到,不管是“系统数据库”还是“用户数据库”都是有这些 ...
- curl_errno错误码说明
http://hi.baidu.com/lifang218c/item/fa80496eb4cf262f68105b50 http://blog.csdn.net/cwj649956781/artic ...
- Strange Addition
http://codeforces.com/problemset/problem/305/A 这题就是意思没看懂,一开始以为只要个位数只要一个为0就能相加,没想到到CF里面提交第三组就过不了,才发现是 ...
- Linux内核中网络数据包的接收-第一部分 概念和框架
与网络数据包的发送不同,网络收包是异步的的.由于你不确定谁会在什么时候突然发一个网络包给你.因此这个网络收包逻辑事实上包括两件事:1.数据包到来后的通知2.收到通知并从数据包中获取数据这两件事发生在协 ...
- 算法笔记_122:蓝桥杯第七届省赛(Java语言A组)试题解答
目录 1 煤球数目 2 生日蜡烛 3 搭积木 4 分小组 5 抽签 6 寒假作业 7 剪邮票 8 取球博弈 9 交换瓶子 10 压缩变换 前言:以下试题解答代码部分仅供参考,若有不当之处,还请路 ...
- C++ union使用注意
union在我们敲代码的时候的使用概率远远小于struct.所以我们常常不太关心她.就知道他是使用内存复用技术.同一个时刻,他仅仅能存在一个成员的值. C中,我们在union中能够包括struct的, ...
- 修改ligerui 默认确认按钮
$.extend($.ligerDefaults.DialogString, {ok: '取消单据'}); showDialogPay = $.ligerDialog.alert('正在支付中,请稍候 ...
- ORACLE检查死锁
一.数据库死锁的现象程序在执行的过程中,点击确定或保存按钮,程序没有响应,也没有出现报错.二.死锁的原理当对于数据库某个表的某一列做更新或删除等操作,执行完毕后该条语句不提交,另一条对于这一列数据做更 ...