题面

踩踩时间复杂度不正确的高斯消元

首先可以发现第一行确定后就可以确定整个矩阵,所以可以枚举第一行的所有状态然后$O(n)$递推检查是否合法

$O(n)$递推的方法是这样的:设$pre$为上一行,$now$为当前行,$nxt$为递推出的下一行,$all$为列的全集,则可以直接用位运算完成递推:

$nxt=all\&((now<<1)xor(now>>1)xor$ $now$ $xor$ $pre)$

递推后第$n+1$行为空则说明可行

问题来了,第一行的状态有$O(2^{40})$种,会$T$。但是有一个鬼畜的性质是如果存在合法解一定有一个对称的合法解,然后就可以$O(n*2^{\frac{n}{2}})$出解了=。=

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=;
int mapp[N][N];
long long n,m,mid,all,half;
long long fir,las,noww,tmp;
int check(int a,int b)
{
return mapp[a][b]^mapp[a-][b]^mapp[a][b-]^mapp[a][b+];
}
int main ()
{
scanf("%lld%lld",&n,&m);
mid=(m+)/,all=(1ll<<m)-,half=(1ll<<mid)-;
for(int i=;i<=half;i++)
{
fir=;
for(int j=;j<=mid;j++)
if(i&(1ll<<(j-))) fir|=(1ll<<(j-))|(1ll<<(m-j));
las=noww=all&(fir^(fir<<)^(fir>>)),tmp=fir;
for(int j=;j<=n;j++)
las=noww,noww=all&(noww^(noww<<)^(noww>>)^tmp),tmp=las;
if(!noww) break;
}
for(int i=;i<=m;i++)
mapp[][i]=(fir&(1ll<<(i-)))?:;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
mapp[i][j]=check(i-,j);
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
printf("%d ",mapp[i][j]);
printf("\n");
}
return ;
}

解题:CQOI 2013 和谐矩阵的更多相关文章

  1. [BZOJ 3503][Cqoi 2014]和谐矩阵

    我觉得这一题的样例输出一点都不和谐,大家千万别像我一样被坑了…… 题目不算难,果然是进错省系列555,不过搞出 O(n*m*2m) 的还是不要挣扎的比较好 我们暴力地推出第 n 行 第 m 列中每个数 ...

  2. BZOJ 3503: [Cqoi2014]和谐矩阵( 高斯消元 )

    偶数个相邻, 以n*m个点为变量, 建立异或方程组然后高斯消元... O((n*m)^3)复杂度看起来好像有点大...但是压一下位的话就是O((n*m)^3 / 64), 常数小, 实际也跑得很快. ...

  3. 【高斯消元】BZOJ3503 [Cqoi2014]和谐矩阵

    3503: [Cqoi2014]和谐矩阵 Time Limit: 10 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 1197  Solved: ...

  4. BZOJ_3503_[Cqoi2014]和谐矩阵_高斯消元

    BZOJ_3503_[Cqoi2014]和谐矩阵_高斯消元 题意: 我们称一个由0和1组成的矩阵是和谐的,当且仅当每个元素都有偶数个相邻的1.一个元素相邻的元素包括它本身,及他上下左右的4个元素(如果 ...

  5. bzoj千题计划105:bzoj3503: [Cqoi2014]和谐矩阵(高斯消元法解异或方程组)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3503 b[i][j] 表示i对j是否有影响 高斯消元解异或方程组 bitset优化 #include ...

  6. 3503: [Cqoi2014]和谐矩阵

    3503: [Cqoi2014]和谐矩阵 链接 分析: 对于每个点,可以列出一个方程a[i][j]=a[i][j-1]^a[i][j+1]^a[i-1][j]^a[i+1][j],于是可以列出n*m个 ...

  7. P3164 [CQOI2014]和谐矩阵

    P3164 [CQOI2014]和谐矩阵 乱写能AC,暴力踩标程(雾 第一眼 诶这题能暴力枚举2333!!! 第二眼 诶这题能高斯消元!那只需要把每个位置的数给设出来就能够列方程了!然后就可以\(O( ...

  8. 【BZOJ】【3503】【CQOI2014】和谐矩阵

    高斯消元解Xor方程组 Orz ZYF o(︶︿︶)o 唉我的数学太烂了…… 错误思路:对每个格点进行标号,然后根据某5个异或和为0列方程组,高斯消元找自由元……(目测N^3会TLE) ZYF的正确思 ...

  9. bzoj3503 和谐矩阵

    Description 我们称一个由0和1组成的矩阵是和谐的,当且仅当每个元素都有偶数个相邻的1.一个元素相邻的元素包括它本身,及他上下左右的4个元素(如果存在).给定矩阵的行数和列数,请计算并输出一 ...

随机推荐

  1. 03_set slice的时间复杂度

    set slice O(n+k) 使用切片赋值来解释set slice的时间复杂度 (1) 对li[0:3]赋值首先会删除1,2,3,空出来的位置被后面的元素依次向前移动填充,由del slice 得 ...

  2. 基于tensorflow实现mnist手写识别 (多层神经网络)

    标题党其实也不多,一个输入层,三个隐藏层,一个输出层 老样子先上代码 导入mnist的路径很长,现在还记不住 import tensorflow as tf import tensorflow.exa ...

  3. [转载]java面试中经常会被问到的一些算法的问题

    Java面试中经常会被问到的一些算法的问题,而大部分算法的理论及思想,我们曾经都能倒背如流,并且也能用开发语言来实现过, 可是很多由于可能在项目开发中应用的比较少,久而久之就很容易被忘记了,在此我分享 ...

  4. Mac环境搭建以太坊私有链

    原文地址: 石匠的blog 为了测试以太坊智能合约,最方便的是在本地搭建一个以太坊私有链.在mac上搭建环境主要需要以下步骤. geth安装 geth是go-ethereum的简写,是一个用go语言编 ...

  5. export命令详解

    基础命令学习目录首页 export 的基本作用就是将父shell中的局部变量设置为环境变量,使得该变量可以在子shell中使用.下面设置两种情景对export进行原理解析. 情景  1. 有一个名为m ...

  6. Daily Scrum4 11.6

    昨天的任务按时完成了,但是通过不到两周的时间,我们的工作依旧停留在修改上届学长代码中.今天上课和老师提出了这样的问题,助教在TFS上重新加载了10级学长的代码. 从上届学长代码那里我们发现,他们没有实 ...

  7. Hibernate利用纯sql

    String hql = "select * from shop where shop.strid in(select strid from moneythreeshop where mon ...

  8. 使用 java 实现一个简单的 markdown 语法解析器

    1. 什么是 markdown Markdown 是一种轻量级的「标记语言」,它的优点很多,目前也被越来越多的写作爱好者,撰稿者广泛使用.看到这里请不要被「标记」.「语言」所迷惑,Markdown 的 ...

  9. C51中的关键字data,idata,xdata,pdata,bdata

    写在最前面的话:官方网站的解答是最可信的.英语不错的必看.http://www.keil.com/support/man/docs/c51/c51_le_memtypes.htm 下面转载几篇中文的, ...

  10. static作用(修饰函数、局部变量、全局变量)

    转自:http://www.cnblogs.com/stoneJin/archive/2011/09/21/2183313.html 在C语言中,static的字面意思很容易把我们导入歧途,其实它的作 ...