题面

踩踩时间复杂度不正确的高斯消元

首先可以发现第一行确定后就可以确定整个矩阵,所以可以枚举第一行的所有状态然后$O(n)$递推检查是否合法

$O(n)$递推的方法是这样的:设$pre$为上一行,$now$为当前行,$nxt$为递推出的下一行,$all$为列的全集,则可以直接用位运算完成递推:

$nxt=all\&((now<<1)xor(now>>1)xor$ $now$ $xor$ $pre)$

递推后第$n+1$行为空则说明可行

问题来了,第一行的状态有$O(2^{40})$种,会$T$。但是有一个鬼畜的性质是如果存在合法解一定有一个对称的合法解,然后就可以$O(n*2^{\frac{n}{2}})$出解了=。=

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=;
int mapp[N][N];
long long n,m,mid,all,half;
long long fir,las,noww,tmp;
int check(int a,int b)
{
return mapp[a][b]^mapp[a-][b]^mapp[a][b-]^mapp[a][b+];
}
int main ()
{
scanf("%lld%lld",&n,&m);
mid=(m+)/,all=(1ll<<m)-,half=(1ll<<mid)-;
for(int i=;i<=half;i++)
{
fir=;
for(int j=;j<=mid;j++)
if(i&(1ll<<(j-))) fir|=(1ll<<(j-))|(1ll<<(m-j));
las=noww=all&(fir^(fir<<)^(fir>>)),tmp=fir;
for(int j=;j<=n;j++)
las=noww,noww=all&(noww^(noww<<)^(noww>>)^tmp),tmp=las;
if(!noww) break;
}
for(int i=;i<=m;i++)
mapp[][i]=(fir&(1ll<<(i-)))?:;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
mapp[i][j]=check(i-,j);
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
printf("%d ",mapp[i][j]);
printf("\n");
}
return ;
}

解题:CQOI 2013 和谐矩阵的更多相关文章

  1. [BZOJ 3503][Cqoi 2014]和谐矩阵

    我觉得这一题的样例输出一点都不和谐,大家千万别像我一样被坑了…… 题目不算难,果然是进错省系列555,不过搞出 O(n*m*2m) 的还是不要挣扎的比较好 我们暴力地推出第 n 行 第 m 列中每个数 ...

  2. BZOJ 3503: [Cqoi2014]和谐矩阵( 高斯消元 )

    偶数个相邻, 以n*m个点为变量, 建立异或方程组然后高斯消元... O((n*m)^3)复杂度看起来好像有点大...但是压一下位的话就是O((n*m)^3 / 64), 常数小, 实际也跑得很快. ...

  3. 【高斯消元】BZOJ3503 [Cqoi2014]和谐矩阵

    3503: [Cqoi2014]和谐矩阵 Time Limit: 10 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 1197  Solved: ...

  4. BZOJ_3503_[Cqoi2014]和谐矩阵_高斯消元

    BZOJ_3503_[Cqoi2014]和谐矩阵_高斯消元 题意: 我们称一个由0和1组成的矩阵是和谐的,当且仅当每个元素都有偶数个相邻的1.一个元素相邻的元素包括它本身,及他上下左右的4个元素(如果 ...

  5. bzoj千题计划105:bzoj3503: [Cqoi2014]和谐矩阵(高斯消元法解异或方程组)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3503 b[i][j] 表示i对j是否有影响 高斯消元解异或方程组 bitset优化 #include ...

  6. 3503: [Cqoi2014]和谐矩阵

    3503: [Cqoi2014]和谐矩阵 链接 分析: 对于每个点,可以列出一个方程a[i][j]=a[i][j-1]^a[i][j+1]^a[i-1][j]^a[i+1][j],于是可以列出n*m个 ...

  7. P3164 [CQOI2014]和谐矩阵

    P3164 [CQOI2014]和谐矩阵 乱写能AC,暴力踩标程(雾 第一眼 诶这题能暴力枚举2333!!! 第二眼 诶这题能高斯消元!那只需要把每个位置的数给设出来就能够列方程了!然后就可以\(O( ...

  8. 【BZOJ】【3503】【CQOI2014】和谐矩阵

    高斯消元解Xor方程组 Orz ZYF o(︶︿︶)o 唉我的数学太烂了…… 错误思路:对每个格点进行标号,然后根据某5个异或和为0列方程组,高斯消元找自由元……(目测N^3会TLE) ZYF的正确思 ...

  9. bzoj3503 和谐矩阵

    Description 我们称一个由0和1组成的矩阵是和谐的,当且仅当每个元素都有偶数个相邻的1.一个元素相邻的元素包括它本身,及他上下左右的4个元素(如果存在).给定矩阵的行数和列数,请计算并输出一 ...

随机推荐

  1. 用 requests 模块从 Web 下载文件

    用 requests 模块从 Web 下载文件 requests 模块让你很容易从 Web 下载文件,不必担心一些复杂的问题,诸如网络错误.连接问题和数据压缩.requests 模块不是 Python ...

  2. Kaggle 广告转化率预测比赛小结

    20天的时间参加了Kaggle的 Avito Demand Prediction Challenged ,第一次参加,成绩离奖牌一步之遥,感谢各位队友,学到的东西远比成绩要丰硕得多.作为新手,希望每记 ...

  3. 随手记录-linux-常用命令

    转自:https://www.cnblogs.com/yjd_hycf_space/p/7730690.html linux目录结构:http://www.cnblogs.com/fat39/p/72 ...

  4. 局域网传输-LED灯搭建局域网:数据传输可达每秒3Gb

    一 : LED灯搭建局域网:数据传输可达每秒3Gb 我们之前介绍了利用可见光通讯技术,通过LED灯光实现精准室内定位的例子.实际上,这种灯泡和技术的用途不止于此,比如,它还能进行无线网络传输. 最近, ...

  5. 看oracle的sid

    ps -ef|grep pmon 可以从进程名字里看到 也可以通过 sqlplus / as sysdbashow parameter instance_name

  6. python处理xml实例

    """ Author = zyh FileName = read_xml_1.py Time = 18-9-26 下午5:19 """ fr ...

  7. 网络助手之NABCD

    Sunny--Code团队:刘中睿,杜晓松,郑成       我们小组这次做的软件名字叫为校园网络助手.它主要有着两项功能:网络助手与校内网盘.          N--need:在学校里有时候我们就 ...

  8. Java 面试-- 1

    JAVA面试精选[Java基础第一部分]   这个系列面试题主要目的是帮助你拿轻松到offer,同时还能开个好价钱.只要能够搞明白这个系列的绝大多数题目,在面试过程中,你就能轻轻松松的把面试官给忽悠了 ...

  9. Linux基础五(系统管理)

    Linux 系统管理 1. 进程管理 1.1 进程管理简介 进程的简介: 一个程序在运行的时候会占用系统的资源,即系统分配资源给某个程序使用,进程就是正在运行中的某个程序或者命令.进程又可以细分为线程 ...

  10. ORACLE LOG的管理

    CREATE OR REPLACE PACKAGE PLOG IS /** * package name : PLOG *<br/> *<br/> *See : <a h ...