这是一个姓Boy的人发现的,所以取名为Boy surface.该图形与罗马图形有点相似,都是三分的图形.它甚至可以说是由罗马曲面变化而成的.

本文将展示几种Boy曲面的生成算法和切图,使用自己定义语法的脚本代码生成数学图形.相关软件参见:数学图形可视化工具,该软件免费开源.QQ交流群: 367752815

In geometry, Boy's surface is an immersion of the real projective plane in 3-dimensional space found by Werner Boy in 1901 (he discovered it on assignment from David Hilbert to prove that the projective plane could not be immersed in 3-space). Unlike the Roman surface and the cross-cap, it has no singularities (i.e. pinch-points), but it does self-intersect.

boy surface 01

#http://www.mathcurve.com/surfaces/boy/boy.shtml
vertices = D1: D2:
u = from to (PI) D1
v = from to (PI) D2
a = sin(u)
b = cos(u)
c = sin(v)
d = cos(v)
m = sqrt()
k = rand2(0.1, 1.4)
t = b/(m - k*sin(*u)*cos(*v))
x = t*(b*cos(*v) + m*a*d)
y = t*(b*sin(*v) - m*a*c)
z = *t*b

boy surface 02

#http://mathworld.wolfram.com/BoySurface.html

vertices = D1: D2:
u = from (-PI/) to (PI/) D1
v = from to PI D2 a = SQRT2*pow(cos(v), )
d = - SQRT2*sin(*u)*sin(*v) x = a*cos(*u) + cos(u)*sin(*v)
y = a*sin(*u) - sin(u)*sin(*v)
z = *pow(cos(v), ) x = x/d
y = y/d
z = z/d

boy surface 03

我在这套公式上花费的时间最多,因为它最复杂,而且也不完美.它的曲面没能闭合.我研究了很久才发现,当r取无穷大时,该曲面才会闭合.

#http://www.ipfw.edu/departments/coas/depts/math/coffman/steinersurface.html
#x = (+r^*cos(t)^)*(sqrt()-sqrt()*r^*cos(t)^+*r*sin(t)) / (*(+r^*cos(t)^)*(+r^*cos(t)^+r^*sin(t)^) + *sqrt()*r^*cos(t)*sin(t)*(-r^*cos(t)^))
#y = *(+r^*cos(t)^)*(sqrt()*r*cos(t) - r^*cos(t)*sin(t)) / (*(+r^*cos(t)^)*(+r^*cos(t)^+r^*sin(t)^) + *sqrt()*r^*cos(t)*sin(t)*(-r^*cos(t)^))
#z = (+r^*cos(t)^)^ / ((+r^*cos(t)^)*(+r^*cos(t)^+r^*sin(t)^) + sqrt()*r^*cos(t)*sin(t)*(-r^*cos(t)^)) vertices = D1: D2:
t = from to (PI*) D1
r = from to D2
c = cos(t)
s = sin(t)
i = (r*c) ^
j = (r*s) ^
m = sqrt()
a = (+i)*(+i+j)
b = m*r*r*c*s*(-i)
x = (+i)*(m-m*i+*r*s) / (*a + *b)
y = *(+i)*(m*r*c - r*r*s*c) / (*a + *b)
z = (+i)*(+i) / (a + b)

数学图形之Boy surface的更多相关文章

  1. 数学图形之Breather surface

    这是一种挺漂亮的曲面图形,可惜没有找到太多的相关解释. In differential equations, a breather surface is a mathematical surface ...

  2. 数学图形之Kuen Surface

    Kuen Surface应该又是一个以数学家名字命名的曲面.本文将展示几种Kuen Surface的生成算法和切图,其中有的是标准的,有的只是相似.使用自己定义语法的脚本代码生成数学图形.相关软件参见 ...

  3. 数学图形之SineSurface与粽子曲面

    SineSurface直译为正弦曲面.这有可能和你想象的正弦曲线不一样.如果把正弦曲线绕Y轴旋转,得到的该是正弦波曲面.这个曲面与上一节中的罗马曲面有些相似,那个是被捏过的正四面体,这个则是个被捏过正 ...

  4. 数学图形之罗马曲面(RomanSurface)

    罗马曲面,像是一个被捏扁的正四面体. 本文将展示罗马曲面的生成算法和切图,使用自己定义语法的脚本代码生成数学图形.相关软件参见:数学图形可视化工具,该软件免费开源.QQ交流群: 367752815 维 ...

  5. 数学图形之克莱因瓶(klein bottle)

    克莱因瓶是一种内外两面在同一个曲面上的图形. 在数学领域中,克莱因瓶(德语:Kleinsche Flasche)是指一种无定向性的平面,比如二维平面,就没有“内部”和“外部”之分.克莱因瓶最初的概念提 ...

  6. WHY数学图形可视化工具(开源)

    WHY数学图形可视化工具 软件下载地址:http://files.cnblogs.com/WhyEngine/WhyMathGraph.zip 源码下载地址: http://pan.baidu.com ...

  7. 数学图形(1.49)Nephroid曲线

    昨天IPhone6在国内发售了,我就顺手发布个关于肾的图形.Nephroid中文意思是肾形的.但是这种曲线它看上去却不像个肾,当你看到它时,你觉得它像什么就是什么吧. The name nephroi ...

  8. 数学图形(1.48)Cranioid curve头颅线

    这是一种形似乎头颅的曲线.这种曲线让我想起读研的时候,搞的医学图像三维可视化.那时的原始数据为脑部CT图像.而三维重建中有一种方式是面绘制,是将每一幅CT的颅骨轮廓提取出来,然后一层层地罗列在一起,生 ...

  9. 数学图形之贝塞尔(Bézier)曲面

    前面章节中讲了贝塞尔(Bézier)曲线,而贝塞尔曲面是对其多一个维度的扩展.其公式依然是曲线的公式: . 而之所以由曲线变成曲面,是将顶点横向连了再纵向连. 很多计算机图形学的教程都会有贝塞尔曲面的 ...

随机推荐

  1. JAVA特性-跨平台/面向对象

    JAVA特点概述 一,跨平台 这无疑是java最大的特点了,我相信大多数人第一次听说java语言大都从跨平台开开始的.实际上java跨平台特性主要体现在两个方面:编码和运行机制. 1,编码 java语 ...

  2. MySQL 关于索引那点事

    索引 其实数据库中的数据是按页存放的其实索引也是按页存放的所以本质上索引也占硬盘空间(以最小的消耗,换取最大的利益) 索引是一种有效组合数据的方式!为快速查找到指定记录做铺垫 目的就是快速或者某个记录 ...

  3. [python 源码]字符串对象的实现

    还是带着问题上路吧,和整数对象的实现同样的问题: >>> a='abc' >>> b='abc' >>> a is b True >> ...

  4. 洛谷 P4884 多少个1?

    题面在这里 好久没做题了2333,竟然还一次A了,神奇 大概就是等比数列然后把分母乘过去,然后直接BSGS就行了,就是要写快速乘恩... #include<bits/stdc++.h> # ...

  5. 【BZOJ】2760: [JLOI2011]小A的烦恼【字符串模拟】

    2760: [JLOI2011]小A的烦恼 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 406  Solved: 258[Submit][Statu ...

  6. Codeforces Round #FF (Div. 1) B. DZY Loves Modification 优先队列

    B. DZY Loves Modification 题目连接: http://www.codeforces.com/contest/446/problem/B Description As we kn ...

  7. hdu 4676 Sum Of Gcd 莫队+phi反演

    Sum Of Gcd 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=4676 Description Given you a sequence of ...

  8. 开发移动端web页面click事件失效问题

    这两天在做一个WAP页面,在chrome上模拟移动端的时候,都好好的,然而放到手机上测试时, 发现有些点击事件直接无反应,但是有些有反应: 难道是由于我页面上有用到滚动插件,里面的touch事件的pr ...

  9. j.u.c系列(01) ---初探ThreadPoolExecutor线程池

    写在前面 之前探索tomcat7启动的过程中,使用了线程池(ThreadPoolExecutor)的技术 public void createExecutor() { internalExecutor ...

  10. spring---aop(10)---Spring AOP中AspectJ

    写在前面 在之前的文章中有写到,Spring在配置中,会存在大量的切面配置.然而在很多情况下,SpringAOP 所提供的切面类真的不是很够用,比如想拦截制定的注解方法,我们就必须扩展DefalutP ...