我们构造$f(x)$的生成函数$G(x)$,那么显然$[x^k]G(x)=Ok^2+Sk+U$

那么显然,答案即为$\sum_{i=1}^{n} [x^m]G^i(x)$

我们构造答案的生成函数$F(x)=\sum_{i=1}^{n} G^i(x)$

根据等比数列求和公式,$F(x)=G(x)\dfrac{1-G^{A}(x)}{1-G(x)}$

如果去等比数列求和的话,你需要多项式快速幂+多项式求逆,时间复杂度显然是$O(m\ log\ m)$的。

然而这个模数并不是质数,所以这么搞不是很好搞。

我们可以用一个类似快速幂的方式,去算出$\sum_{i-1}^{2^k-1}G^i(x)$的值。

这么搞的时间复杂度显然是$O(m\ log\ m\ log\ A)$。

然后就没了

第一次自己推出生成函数的题美滋滋

 #include<bits/stdc++.h>
#define MOD 998244353
#define L long long
#define M 1<<15
#define G 3
using namespace std; L pow_mod(L x,L k){
L ans=;
while(k){
if(k&) ans=ans*x%MOD;
x=x*x%MOD; k>>=;
}
return ans;
}
void change(L a[],int n){
for(int i=,j=;i<n-;i++){
if(i<j) swap(a[i],a[j]);
int k=n>>;
while(j>=k) j-=k,k>>=;
j+=k;
}
}
void NTT(L a[],int n,int on){
change(a,n);
for(int h=;h<=n;h<<=){
L wn=pow_mod(G,(MOD-)/h);
for(int j=;j<n;j+=h){
L w=;
for(int k=j;k<j+(h>>);k++){
L u=a[k],t=w*a[k+(h>>)]%MOD;
a[k]=(u+t)%MOD;
a[k+(h>>)]=(u-t+MOD)%MOD;
w=w*wn%MOD;
}
}
}
if(on==-){
L inv=pow_mod(n,MOD-);
for(int i=;i<n;i++) a[i]=a[i]*inv%MOD;
reverse(a+,a+n);
}
}
L m,P,A,O,S,U;
L g[M]={},gsum[M]={},ans[M]={}; int main(){
cin>>m>>P>>A>>O>>S>>U;
for(L i=;i<=m;i++) g[i]=(O*i*i+S*i+U)%P;
int len=; while(len<=(m*)) len<<=;
gsum[]=;
A=min(A,m);
while(A){ if(A&){
NTT(ans,len,); NTT(g,len,);
for(int i=;i<len;i++) ans[i]=ans[i]*g[i]%MOD;
NTT(ans,len,-); NTT(g,len,-);
for(int i=;i<=m;i++)
ans[i]=(ans[i]+g[i]+gsum[i])%P;
for(int i=m+;i<len;i++) ans[i]=;
}
A>>=; g[]++;
NTT(g,len,); NTT(gsum,len,);
for(int i=;i<len;i++) gsum[i]=gsum[i]*g[i]%MOD;
NTT(g,len,-); NTT(gsum,len,-);
g[]--;
for(int i=;i<len;i++) if(i>m) gsum[i]=; else gsum[i]%=P; NTT(g,len,);
for(int i=;i<len;i++) g[i]=g[i]*g[i]%MOD;
NTT(g,len,-);
for(int i=;i<len;i++) if(i>m) g[i]=; else g[i]%=P;
}
cout<<ans[m]<<endl;
}

【bzoj4332】【JSOI2012】 分零食 生成函数 FFT的更多相关文章

  1. [BZOJ 4332] [JSOI2012]分零食(DP+FFT)

    [BZOJ 4332] [JSOI2012]分零食(DP+FFT) 题面 同学们依次排成了一列,其中有A位小朋友,有三个共同的欢乐系数O,S和U.如果有一位小朋友得到了x个糖果,那么她的欢乐程度就是\ ...

  2. 【BZOJ 4332】 4332: JSOI2012 分零食 (FFT+快速幂)

    4332: JSOI2012 分零食 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 119  Solved: 66 Description 这里是欢乐 ...

  3. bzoj千题计划309:bzoj4332: JSOI2012 分零食(分治+FFT)

    https://www.lydsy.com/JudgeOnline/problem.php?id=4332 因为如果一位小朋友得不到糖果,那么在她身后的小朋友们也都得不到糖果. 所以设g[i][j] ...

  4. BZOJ4332 JSOI2012 分零食 【倍增 + NTT】

    题目链接 权限题BZOJ4332 题解 容易想到\(dp\) 设\(g[i][j]\)表示前\(i\)人分到\(j\)颗糖的所有方案的乘积之和 设\(f(x) = Ox^2 + Sx + U\) \[ ...

  5. bzoj4332[JSOI2012]分零食

    一下午被这题的精度续掉了...首先可以找出一个多项式的等比数列的形式,然后类似poj的Matrix Series,不断倍增就可以了.用复数点值表示进行多次的多项式运算会刷刷地炸精度...应当用int存 ...

  6. bzoj4332;vijos1955:JSOI2012 分零食

    描述 这里是欢乐的进香河,这里是欢乐的幼儿园. 今天是2月14日,星期二.在这个特殊的日子里,老师带着同学们欢乐地跳着,笑着.校长从幼儿园旁边的小吃店买了大量的零食决定分给同学们.听到这个消息,所有同 ...

  7. BZOJ 4332: JSOI2012 分零食 FFT+分治

    好题好题~ #include <bits/stdc++.h> #define N 50020 #define ll long long #define setIO(s) freopen(s ...

  8. bzoj 4332:JSOI2012 分零食

    描述 这里是欢乐的进香河,这里是欢乐的幼儿园. 今天是2月14日,星期二.在这个特殊的日子里,老师带着同学们欢乐地跳着,笑着.校长从幼儿园旁边的小吃店买了大量的零食决定分给同学们.听到这个消息,所有同 ...

  9. bzoj 4332: JSOI2012 分零食 快速傅立叶变换

    题目: Description 同学们依次排成了一列,其中有A位小朋友,有三个共同的欢乐系数O,S和U.如果有一位小朋友得到了x个糖果,那么她的欢乐程度就是\(f(x)=O*x^2+S*x+U\) 现 ...

随机推荐

  1. C++11的一般概念——The C++ standard library, 2nd Edition 笔记(二)

    ( 原书第四章,General Concepts) 只介绍新内容,关于头文件格式和后缀等C++03已经规范化的内容,不再赘述. namespace std:新的std子空间包括: std::tr1, ...

  2. KBMMW 4.70.00 发布

    We are happy to announce the release of kbmMW v. 4.70.00 Professional and Enterprise Edition. kbmMW ...

  3. Devexpress VCL Build v2013 vol 14.1.5 发布

    What's New in 14.1.5 (VCL Product Line)   New Major Features in 14.1 What's New in VCL Products 14.1 ...

  4. gj2 python中一切皆对象

    2.1 python中一切皆是对象 动态语言和静态语言的区别,Python的面向对象更彻底 同时动态语言,代码的灵活性高 没有编译(检查)的过程,错误只有在运行起来后才会发现 函数和类也是对象,属于p ...

  5. ViewFlipper实现自动播放的图片库

    作者实现的基础上,加上了文字的变换 public class MainActivity extends Activity { private ViewFlipper viewFlipper; priv ...

  6. HDU 2393 Higher Math (判断直角三角形)

    题意:给定三个边,判断是不是直角三角形. 析:水题,勾股定理... 代码如下: #include <iostream> #include <cstdio> #include & ...

  7. spring mvc 静态资源版本控制

    spring bean 文件中增加 <bean class="cn.zno.smse.common.context.VersionServletContext">< ...

  8. 简单的cxf-ws 基于web容器

    pom.xml <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w ...

  9. MFC中和定时器使用

    在MFC中和定时器相关的有三个函数: 1.设置定时器(定义一个定时器的属性):         SetTimer( UINT nIDEvent, UINT nElapse, void (CALLBAC ...

  10. 从问题域看hadoop的各种技术

    近些年来Hadoop生态系统发展迅猛,它本身包含的软件越来越多,同时带动了周边系统的繁荣发展.尤其是在分布式计算这一领域,系统繁多纷杂,时不时冒出一个系统,号称自己比MapReduce或者Hive高效 ...