我们构造$f(x)$的生成函数$G(x)$,那么显然$[x^k]G(x)=Ok^2+Sk+U$

那么显然,答案即为$\sum_{i=1}^{n} [x^m]G^i(x)$

我们构造答案的生成函数$F(x)=\sum_{i=1}^{n} G^i(x)$

根据等比数列求和公式,$F(x)=G(x)\dfrac{1-G^{A}(x)}{1-G(x)}$

如果去等比数列求和的话,你需要多项式快速幂+多项式求逆,时间复杂度显然是$O(m\ log\ m)$的。

然而这个模数并不是质数,所以这么搞不是很好搞。

我们可以用一个类似快速幂的方式,去算出$\sum_{i-1}^{2^k-1}G^i(x)$的值。

这么搞的时间复杂度显然是$O(m\ log\ m\ log\ A)$。

然后就没了

第一次自己推出生成函数的题美滋滋

 #include<bits/stdc++.h>
#define MOD 998244353
#define L long long
#define M 1<<15
#define G 3
using namespace std; L pow_mod(L x,L k){
L ans=;
while(k){
if(k&) ans=ans*x%MOD;
x=x*x%MOD; k>>=;
}
return ans;
}
void change(L a[],int n){
for(int i=,j=;i<n-;i++){
if(i<j) swap(a[i],a[j]);
int k=n>>;
while(j>=k) j-=k,k>>=;
j+=k;
}
}
void NTT(L a[],int n,int on){
change(a,n);
for(int h=;h<=n;h<<=){
L wn=pow_mod(G,(MOD-)/h);
for(int j=;j<n;j+=h){
L w=;
for(int k=j;k<j+(h>>);k++){
L u=a[k],t=w*a[k+(h>>)]%MOD;
a[k]=(u+t)%MOD;
a[k+(h>>)]=(u-t+MOD)%MOD;
w=w*wn%MOD;
}
}
}
if(on==-){
L inv=pow_mod(n,MOD-);
for(int i=;i<n;i++) a[i]=a[i]*inv%MOD;
reverse(a+,a+n);
}
}
L m,P,A,O,S,U;
L g[M]={},gsum[M]={},ans[M]={}; int main(){
cin>>m>>P>>A>>O>>S>>U;
for(L i=;i<=m;i++) g[i]=(O*i*i+S*i+U)%P;
int len=; while(len<=(m*)) len<<=;
gsum[]=;
A=min(A,m);
while(A){ if(A&){
NTT(ans,len,); NTT(g,len,);
for(int i=;i<len;i++) ans[i]=ans[i]*g[i]%MOD;
NTT(ans,len,-); NTT(g,len,-);
for(int i=;i<=m;i++)
ans[i]=(ans[i]+g[i]+gsum[i])%P;
for(int i=m+;i<len;i++) ans[i]=;
}
A>>=; g[]++;
NTT(g,len,); NTT(gsum,len,);
for(int i=;i<len;i++) gsum[i]=gsum[i]*g[i]%MOD;
NTT(g,len,-); NTT(gsum,len,-);
g[]--;
for(int i=;i<len;i++) if(i>m) gsum[i]=; else gsum[i]%=P; NTT(g,len,);
for(int i=;i<len;i++) g[i]=g[i]*g[i]%MOD;
NTT(g,len,-);
for(int i=;i<len;i++) if(i>m) g[i]=; else g[i]%=P;
}
cout<<ans[m]<<endl;
}

【bzoj4332】【JSOI2012】 分零食 生成函数 FFT的更多相关文章

  1. [BZOJ 4332] [JSOI2012]分零食(DP+FFT)

    [BZOJ 4332] [JSOI2012]分零食(DP+FFT) 题面 同学们依次排成了一列,其中有A位小朋友,有三个共同的欢乐系数O,S和U.如果有一位小朋友得到了x个糖果,那么她的欢乐程度就是\ ...

  2. 【BZOJ 4332】 4332: JSOI2012 分零食 (FFT+快速幂)

    4332: JSOI2012 分零食 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 119  Solved: 66 Description 这里是欢乐 ...

  3. bzoj千题计划309:bzoj4332: JSOI2012 分零食(分治+FFT)

    https://www.lydsy.com/JudgeOnline/problem.php?id=4332 因为如果一位小朋友得不到糖果,那么在她身后的小朋友们也都得不到糖果. 所以设g[i][j] ...

  4. BZOJ4332 JSOI2012 分零食 【倍增 + NTT】

    题目链接 权限题BZOJ4332 题解 容易想到\(dp\) 设\(g[i][j]\)表示前\(i\)人分到\(j\)颗糖的所有方案的乘积之和 设\(f(x) = Ox^2 + Sx + U\) \[ ...

  5. bzoj4332[JSOI2012]分零食

    一下午被这题的精度续掉了...首先可以找出一个多项式的等比数列的形式,然后类似poj的Matrix Series,不断倍增就可以了.用复数点值表示进行多次的多项式运算会刷刷地炸精度...应当用int存 ...

  6. bzoj4332;vijos1955:JSOI2012 分零食

    描述 这里是欢乐的进香河,这里是欢乐的幼儿园. 今天是2月14日,星期二.在这个特殊的日子里,老师带着同学们欢乐地跳着,笑着.校长从幼儿园旁边的小吃店买了大量的零食决定分给同学们.听到这个消息,所有同 ...

  7. BZOJ 4332: JSOI2012 分零食 FFT+分治

    好题好题~ #include <bits/stdc++.h> #define N 50020 #define ll long long #define setIO(s) freopen(s ...

  8. bzoj 4332:JSOI2012 分零食

    描述 这里是欢乐的进香河,这里是欢乐的幼儿园. 今天是2月14日,星期二.在这个特殊的日子里,老师带着同学们欢乐地跳着,笑着.校长从幼儿园旁边的小吃店买了大量的零食决定分给同学们.听到这个消息,所有同 ...

  9. bzoj 4332: JSOI2012 分零食 快速傅立叶变换

    题目: Description 同学们依次排成了一列,其中有A位小朋友,有三个共同的欢乐系数O,S和U.如果有一位小朋友得到了x个糖果,那么她的欢乐程度就是\(f(x)=O*x^2+S*x+U\) 现 ...

随机推荐

  1. Windows10(uwp)开发中的侧滑

    还是在持续的开发一款Windows10的应用中,除了上篇博客讲讲我在Windows10(uwp)开发中遇到的一些坑,其实还有很多不完善的地方,比如(UIElement.Foreground).(Gra ...

  2. 前端之css笔记3

    一 display属性 <!DOCTYPE html> <html lang="en"> <head> <meta charset=&qu ...

  3. 2018.09.28 bzoj3688: 折线统计(dp+树状数组)

    传送门 简单树状数组优化dp. 注意到k很小提示我们搜(d)(d)(d)索(p)(p)(p). 先按第一维排序. 用f[i][j][0/1]f[i][j][0/1]f[i][j][0/1]表示第i个点 ...

  4. 2018.08.30 游戏(概率dp)

    题目描述 Alice 和 Bob 两个人正在玩一个游戏,游戏有很多种任务,难度为 p 的任务(p是正整数),有 1/(2^p) 的概率完成并得到 2^(p-1) 分,如果完成不了,得 0 分.一开始每 ...

  5. head first 设计模式文摘

    1 欢迎来到设计模式世界:设计模式入门 2 让你的对象知悉现况:观察者模式 3 装饰对象:装饰者模式 4 工厂模式:烘烤OO的精华 5 单件模式:独一无二的对象 6 命令模式:封装调用 7 适配器模式 ...

  6. 【Unity】2.4 层次视图(Hierarchy)

    分类:Unity.C#.VS2015 创建日期:2016-03-29 一.简介 层级视图 (Hierarchy) 包含当前场景中的每个游戏对象 (GameObject).有些是三维模型等资源文件的直接 ...

  7. 程序员面试50题(1)—查找最小的k个元素[算法]

    题目:输入n个整数,输出其中最小的k个.例如输入1,2,3,4,5,6,7和8这8个数字,则最小的4个数字为1,2,3和4. 分析:这道题最简单的思路莫过于把输入的n个整数排序,这样排在最前面的k个数 ...

  8. 【转载】不得不知道的Python字符串编码相关的知识

    原文地址:http://www.cnblogs.com/Xjng/p/5093905.html 开发经常会遇到各种字符串编码的问题,例如报错SyntaxError: Non-ASCII charact ...

  9. Spring Boot的自动配置的原理浅析

    一.原理描述 Spring Boot在进行SpringApplication对象实例化时会加载META-INF/spring.factories文件,将该配置文件中的配置载入到Spring容器. 二. ...

  10. 13) Developing Java Plugins

    官方指导 http://maven.apache.org/guides/plugin/guide-java-plugin-development.html http://maven.apache.or ...