【bzoj4332】【JSOI2012】 分零食 生成函数 FFT
我们构造$f(x)$的生成函数$G(x)$,那么显然$[x^k]G(x)=Ok^2+Sk+U$
那么显然,答案即为$\sum_{i=1}^{n} [x^m]G^i(x)$
我们构造答案的生成函数$F(x)=\sum_{i=1}^{n} G^i(x)$
根据等比数列求和公式,$F(x)=G(x)\dfrac{1-G^{A}(x)}{1-G(x)}$
如果去等比数列求和的话,你需要多项式快速幂+多项式求逆,时间复杂度显然是$O(m\ log\ m)$的。
然而这个模数并不是质数,所以这么搞不是很好搞。
我们可以用一个类似快速幂的方式,去算出$\sum_{i-1}^{2^k-1}G^i(x)$的值。
这么搞的时间复杂度显然是$O(m\ log\ m\ log\ A)$。
然后就没了
第一次自己推出生成函数的题美滋滋
#include<bits/stdc++.h>
#define MOD 998244353
#define L long long
#define M 1<<15
#define G 3
using namespace std; L pow_mod(L x,L k){
L ans=;
while(k){
if(k&) ans=ans*x%MOD;
x=x*x%MOD; k>>=;
}
return ans;
}
void change(L a[],int n){
for(int i=,j=;i<n-;i++){
if(i<j) swap(a[i],a[j]);
int k=n>>;
while(j>=k) j-=k,k>>=;
j+=k;
}
}
void NTT(L a[],int n,int on){
change(a,n);
for(int h=;h<=n;h<<=){
L wn=pow_mod(G,(MOD-)/h);
for(int j=;j<n;j+=h){
L w=;
for(int k=j;k<j+(h>>);k++){
L u=a[k],t=w*a[k+(h>>)]%MOD;
a[k]=(u+t)%MOD;
a[k+(h>>)]=(u-t+MOD)%MOD;
w=w*wn%MOD;
}
}
}
if(on==-){
L inv=pow_mod(n,MOD-);
for(int i=;i<n;i++) a[i]=a[i]*inv%MOD;
reverse(a+,a+n);
}
}
L m,P,A,O,S,U;
L g[M]={},gsum[M]={},ans[M]={}; int main(){
cin>>m>>P>>A>>O>>S>>U;
for(L i=;i<=m;i++) g[i]=(O*i*i+S*i+U)%P;
int len=; while(len<=(m*)) len<<=;
gsum[]=;
A=min(A,m);
while(A){ if(A&){
NTT(ans,len,); NTT(g,len,);
for(int i=;i<len;i++) ans[i]=ans[i]*g[i]%MOD;
NTT(ans,len,-); NTT(g,len,-);
for(int i=;i<=m;i++)
ans[i]=(ans[i]+g[i]+gsum[i])%P;
for(int i=m+;i<len;i++) ans[i]=;
}
A>>=; g[]++;
NTT(g,len,); NTT(gsum,len,);
for(int i=;i<len;i++) gsum[i]=gsum[i]*g[i]%MOD;
NTT(g,len,-); NTT(gsum,len,-);
g[]--;
for(int i=;i<len;i++) if(i>m) gsum[i]=; else gsum[i]%=P; NTT(g,len,);
for(int i=;i<len;i++) g[i]=g[i]*g[i]%MOD;
NTT(g,len,-);
for(int i=;i<len;i++) if(i>m) g[i]=; else g[i]%=P;
}
cout<<ans[m]<<endl;
}
【bzoj4332】【JSOI2012】 分零食 生成函数 FFT的更多相关文章
- [BZOJ 4332] [JSOI2012]分零食(DP+FFT)
[BZOJ 4332] [JSOI2012]分零食(DP+FFT) 题面 同学们依次排成了一列,其中有A位小朋友,有三个共同的欢乐系数O,S和U.如果有一位小朋友得到了x个糖果,那么她的欢乐程度就是\ ...
- 【BZOJ 4332】 4332: JSOI2012 分零食 (FFT+快速幂)
4332: JSOI2012 分零食 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 119 Solved: 66 Description 这里是欢乐 ...
- bzoj千题计划309:bzoj4332: JSOI2012 分零食(分治+FFT)
https://www.lydsy.com/JudgeOnline/problem.php?id=4332 因为如果一位小朋友得不到糖果,那么在她身后的小朋友们也都得不到糖果. 所以设g[i][j] ...
- BZOJ4332 JSOI2012 分零食 【倍增 + NTT】
题目链接 权限题BZOJ4332 题解 容易想到\(dp\) 设\(g[i][j]\)表示前\(i\)人分到\(j\)颗糖的所有方案的乘积之和 设\(f(x) = Ox^2 + Sx + U\) \[ ...
- bzoj4332[JSOI2012]分零食
一下午被这题的精度续掉了...首先可以找出一个多项式的等比数列的形式,然后类似poj的Matrix Series,不断倍增就可以了.用复数点值表示进行多次的多项式运算会刷刷地炸精度...应当用int存 ...
- bzoj4332;vijos1955:JSOI2012 分零食
描述 这里是欢乐的进香河,这里是欢乐的幼儿园. 今天是2月14日,星期二.在这个特殊的日子里,老师带着同学们欢乐地跳着,笑着.校长从幼儿园旁边的小吃店买了大量的零食决定分给同学们.听到这个消息,所有同 ...
- BZOJ 4332: JSOI2012 分零食 FFT+分治
好题好题~ #include <bits/stdc++.h> #define N 50020 #define ll long long #define setIO(s) freopen(s ...
- bzoj 4332:JSOI2012 分零食
描述 这里是欢乐的进香河,这里是欢乐的幼儿园. 今天是2月14日,星期二.在这个特殊的日子里,老师带着同学们欢乐地跳着,笑着.校长从幼儿园旁边的小吃店买了大量的零食决定分给同学们.听到这个消息,所有同 ...
- bzoj 4332: JSOI2012 分零食 快速傅立叶变换
题目: Description 同学们依次排成了一列,其中有A位小朋友,有三个共同的欢乐系数O,S和U.如果有一位小朋友得到了x个糖果,那么她的欢乐程度就是\(f(x)=O*x^2+S*x+U\) 现 ...
随机推荐
- crontab误删除
命令如下: cat /var/log/cron* | grep -i "`which cron`" > ./all_temp cat ./all_temp | grep -v ...
- 使用kubeadm安装kubernetes1.12.2版本脚本
Master节点脚本: #!/bin/sh#使用系统的PATH环境export PATH=`echo $PATH` #停止firewall防火墙,并禁止开机自启动 systemctl stop fir ...
- 2018.06.29 洛谷P2890 [USACO07OPEN]便宜的回文(简单dp)
P2890 [USACO07OPEN]便宜的回文Cheapest Palindrome 时空限制 1000ms / 128MB 题目描述 Keeping track of all the cows c ...
- 极小极大搜索方法、负值最大算法和Alpha-Beta搜索方法
1. 极小极大搜索方法 一般应用在博弈搜索中,比如:围棋,五子棋,象棋等.结果有三种可能:胜利.失败和平局.暴力搜索,如果想通过暴力搜索,把最终的结果得到的话,搜索树的深度太大了,机器不能满足, ...
- js基础学习笔记(五)
多种选择(Switch语句) 当有很多种选项的时候,switch比if else使用更方便. 语法: switch(表达式) { case值1: 执行代码块 1 break; case值2: 执行代码 ...
- 使用系统的CoreLocation定位
//// ViewController.m// LBS//// Created by tonnyhuang on 15/8/28.// Copyright (c) 2015年 tonnyhua ...
- (求树的直径)Warm up -- HDU -- 4612
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4612 给一个无向图, 加上一条边后,求桥至少有几个: 那我们加的那条边的两个顶点u,v:一定是u,v之 ...
- 为spring代理类设置属性值
现在有一个bean包含了私有属性,如下: @Component public class Bean { String name; public String getName() { return na ...
- EBS-DBA 维护
--查询表空间使用率: SELECT UPPER(F.TABLESPACE_NAME) "表空间名", D.TOT_GROOTTE_MB "表空间大小(M)", ...
- MAC将 /etc/sudoers文件修改错后的几种解决方法
文件修改错误后难以再次修改的原因: 1.修改此文件必须是root权限 2.此文件出现问题时sudo命令不可用 3.默认情况下MAC系统不启用root用户 解决的方法: 一.启用root用户,使用roo ...