和导师在Computers & Geosciences上发表的关于多流向算法GPU并行化的文章(SCI, IF=1.834)。

论文:http://sourcedb.igsnrr.cas.cn/zw/lw/201207/P020120717506311161951.pdf

As one of the important tasks in digital terrain analysis, the calculation of flow accumulations from gridded digital elevation models (DEMs) usually involves two steps in a real application: (1) using an iterative DEM preprocessing algorithm to remove the depressions and flat areas commonly contained in real DEMs, and (2) using a recursive flow-direction algorithm to calculate the flow accumulation for every cell in the DEM. Because both algorithms are computationally intensive, quick calculation of the flow accumulations from a DEM (especially for a large area) presents a practical challenge to personal computer (PC) users. In recent years, rapid increases in hardware capacity of the graphics processing units (GPUs) provided in modern PCs have made it possible to meet this challenge in a PC environment. Parallel computing on GPUs using a compute-unified-device-architecture (CUDA) programming model has been explored to speed up the execution of the single-flow-direction algorithm (SFD). However, the parallel implementation on a GPU of the multiple-flow-direction (MFD) algorithm, which generally performs better than the SFD algorithm, has not been reported. Moreover, GPU-based parallelization of the DEM preprocessing step in the flow-accumulation calculations has not been addressed. This paper proposes a parallel approach to calculate flow accumulations (including both iterative DEM preproces- sing and a recursive MFD algorithm) on a CUDA-compatible GPU. For the parallelization of an MFD algorithm (MFD-md), two different parallelization strategies using a GPU are explored. The first parallelization strategy, which has been used in the existing parallel SFD algorithm on GPU, has the problem of computing redundancy. Therefore, we designed a parallelization strategy based on graph theory. The application results show that the proposed parallel approach to calculate flow accumula- tions on a GPU performs much faster than either sequential algorithms or other parallel GPU-based algorithms based on existing parallelization strategies.

多流向算法GPU并行化的更多相关文章

  1. 分布式机器学习:PageRank算法的并行化实现(PySpark)

    1. PageRank的两种串行迭代求解算法 我们在博客<数值分析:幂迭代和PageRank算法(Numpy实现)>算法中提到过用幂法求解PageRank. 给定有向图 我们可以写出其马尔 ...

  2. GPU:并行计算利器

    http://blog.jobbole.com/87849/     首页 最新文章 IT 职场 前端 后端 移动端 数据库 运维 其他技术 - 导航条 - 首页 最新文章 IT 职场 前端 - Ja ...

  3. 基于GPU的算法并行化

    GPU计算的目的即是计算加速.相比于CPU,其具有以下三个方面的优势: l  并行度高:GPU的Core数远远多于CPU(如G100 GPU有240个Cores),从而GPU的任务并发度也远高于CPU ...

  4. 基于spark实现并行化Apriori算法

    详细代码我已上传到github:click me 一. 实验要求         在 Spark2.3 平台上实现 Apriori 频繁项集挖掘的并行化算法.要求程序利用 Spark 进行并行计算. ...

  5. 玩深度学习选哪块英伟达 GPU?有性价比排名还不够!

    本文來源地址:https://www.leiphone.com/news/201705/uo3MgYrFxgdyTRGR.html 与“传统” AI 算法相比,深度学习(DL)的计算性能要求,可以说完 ...

  6. 【并行计算-CUDA开发】浅谈GPU并行计算新趋势

    随着GPU的可编程性不断增强,GPU的应用能力已经远远超出了图形渲染任务,利用GPU完成通用计算的研究逐渐活跃起来,将GPU用于图形渲染以外领域的计算成为GPGPU(General Purpose c ...

  7. mahout中kmeans算法和Canopy算法实现原理

    本文讲一下mahout中kmeans算法和Canopy算法实现原理. 一. Kmeans是一个很经典的聚类算法,我想大家都非常熟悉.虽然算法较为简单,在实际应用中却可以有不错的效果:其算法原理也决定了 ...

  8. 标签传播算法(Label Propagation)及Python实现

    众所周知,机器学习可以大体分为三大类:监督学习.非监督学习和半监督学习.监督学习可以认为是我们有非常多的labeled标注数据来train一个模型,期待这个模型能学习到数据的分布,以期对未来没有见到的 ...

  9. Weka算法Classifier-meta-AdaBoostM1源代码分析(一)

    多分类器组合算法简单的来讲经常使用的有voting,bagging和boosting,当中就效果来说Boosting略占优势,而AdaBoostM1算法又相当于Boosting算法的"经典款 ...

随机推荐

  1. hdu 2063 匈牙利算法

    http://acm.hdu.edu.cn/showproblem.php?pid=2063 男女配对最大数 匈牙利算法模板 #include <cstdio> #include < ...

  2. 深入浅析Node.js单线程模型

    Node.js采用 事件驱动 和 异步I/O 的方式,实现了一个单线程.高并发的运行时环境,而单线程就意味着同一时间只能做一件事,那么Node.js如何利用单线程来实现高并发和异步I/O?本文将围绕这 ...

  3. Bad Day -- Daniel Powter

                                     Bad Day Bad Day (坏天气) 来自 Daniel Powter -- 2005年MTV欧洲音乐奖提名最佳新人, 出自专辑 ...

  4. Android-天气预报Demo-JSON数据解析

    在上两篇博客,Android-解析JSON数据(JSON对象/JSON数组),Android-Gson解析JSON数据(JSON对象/JSON数组),是介绍了解析本地文件里面的JSON数据: Andr ...

  5. linux系统编程之信号(三):信号安装、signal、kill,arise讲解

    一,信号安装 如果进程要处理某一信号,那么就要在进程中安装该信号.安装信号主要用来确定信号值及进程针对该信号值的动作之间的映射关系,即进程将要处理哪个信号:该信号被传递给进程时,将执行何种操作. li ...

  6. 关于gridview改变行内容事件需要点击别的行或控件才能执行

    一般的datagridview控件: this.dgvAssetList.CurrentCell = null;//取消datagridview行的编辑状态 Dev gridcontrol控件  Gr ...

  7. .Net框架搭建:SQL Server EF MVC简单三层框架

    https://blog.csdn.net/pukuimin1226/article/details/52313656

  8. 《JavaScript高级程序设计》5.5 Function类型

    5.5 Function类型 函数实质上是对象, 每个函数都是Function类型的实例, 并且都和其他引用类型一样具有属性和方法. 因此函数名实际上也是一个指向函数对象的指针, 不会与某个函数绑定. ...

  9. C#后端接收form-data,创建实体类

    public class Para_list //实体类 { public long ParemeterID { get; set; } public string Name { get; set; ...

  10. python 带参与不带参装饰器的使用与流程分析/什么是装饰器/装饰器使用注意事项

    一.什么是装饰器 装饰器是用来给函数动态的添加功能的一种技术,属于一种语法糖.通俗一点讲就是:在不会影响原有函数的功能基础上,在原有函数的执行过程中额外的添加上另外一段处理逻辑 二.装饰器功能实现的技 ...