多流向算法GPU并行化
和导师在Computers & Geosciences上发表的关于多流向算法GPU并行化的文章(SCI, IF=1.834)。
论文:http://sourcedb.igsnrr.cas.cn/zw/lw/201207/P020120717506311161951.pdf



As one of the important tasks in digital terrain analysis, the calculation of flow accumulations from gridded digital elevation models (DEMs) usually involves two steps in a real application: (1) using an iterative DEM preprocessing algorithm to remove the depressions and flat areas commonly contained in real DEMs, and (2) using a recursive flow-direction algorithm to calculate the flow accumulation for every cell in the DEM. Because both algorithms are computationally intensive, quick calculation of the flow accumulations from a DEM (especially for a large area) presents a practical challenge to personal computer (PC) users. In recent years, rapid increases in hardware capacity of the graphics processing units (GPUs) provided in modern PCs have made it possible to meet this challenge in a PC environment. Parallel computing on GPUs using a compute-unified-device-architecture (CUDA) programming model has been explored to speed up the execution of the single-flow-direction algorithm (SFD). However, the parallel implementation on a GPU of the multiple-flow-direction (MFD) algorithm, which generally performs better than the SFD algorithm, has not been reported. Moreover, GPU-based parallelization of the DEM preprocessing step in the flow-accumulation calculations has not been addressed. This paper proposes a parallel approach to calculate flow accumulations (including both iterative DEM preproces- sing and a recursive MFD algorithm) on a CUDA-compatible GPU. For the parallelization of an MFD algorithm (MFD-md), two different parallelization strategies using a GPU are explored. The first parallelization strategy, which has been used in the existing parallel SFD algorithm on GPU, has the problem of computing redundancy. Therefore, we designed a parallelization strategy based on graph theory. The application results show that the proposed parallel approach to calculate flow accumula- tions on a GPU performs much faster than either sequential algorithms or other parallel GPU-based algorithms based on existing parallelization strategies.
多流向算法GPU并行化的更多相关文章
- 分布式机器学习:PageRank算法的并行化实现(PySpark)
1. PageRank的两种串行迭代求解算法 我们在博客<数值分析:幂迭代和PageRank算法(Numpy实现)>算法中提到过用幂法求解PageRank. 给定有向图 我们可以写出其马尔 ...
- GPU:并行计算利器
http://blog.jobbole.com/87849/ 首页 最新文章 IT 职场 前端 后端 移动端 数据库 运维 其他技术 - 导航条 - 首页 最新文章 IT 职场 前端 - Ja ...
- 基于GPU的算法并行化
GPU计算的目的即是计算加速.相比于CPU,其具有以下三个方面的优势: l 并行度高:GPU的Core数远远多于CPU(如G100 GPU有240个Cores),从而GPU的任务并发度也远高于CPU ...
- 基于spark实现并行化Apriori算法
详细代码我已上传到github:click me 一. 实验要求 在 Spark2.3 平台上实现 Apriori 频繁项集挖掘的并行化算法.要求程序利用 Spark 进行并行计算. ...
- 玩深度学习选哪块英伟达 GPU?有性价比排名还不够!
本文來源地址:https://www.leiphone.com/news/201705/uo3MgYrFxgdyTRGR.html 与“传统” AI 算法相比,深度学习(DL)的计算性能要求,可以说完 ...
- 【并行计算-CUDA开发】浅谈GPU并行计算新趋势
随着GPU的可编程性不断增强,GPU的应用能力已经远远超出了图形渲染任务,利用GPU完成通用计算的研究逐渐活跃起来,将GPU用于图形渲染以外领域的计算成为GPGPU(General Purpose c ...
- mahout中kmeans算法和Canopy算法实现原理
本文讲一下mahout中kmeans算法和Canopy算法实现原理. 一. Kmeans是一个很经典的聚类算法,我想大家都非常熟悉.虽然算法较为简单,在实际应用中却可以有不错的效果:其算法原理也决定了 ...
- 标签传播算法(Label Propagation)及Python实现
众所周知,机器学习可以大体分为三大类:监督学习.非监督学习和半监督学习.监督学习可以认为是我们有非常多的labeled标注数据来train一个模型,期待这个模型能学习到数据的分布,以期对未来没有见到的 ...
- Weka算法Classifier-meta-AdaBoostM1源代码分析(一)
多分类器组合算法简单的来讲经常使用的有voting,bagging和boosting,当中就效果来说Boosting略占优势,而AdaBoostM1算法又相当于Boosting算法的"经典款 ...
随机推荐
- SpringMVC 示例实战教程
一.SpringMVC基础入门,创建一个HelloWorld程序 1.首先,导入SpringMVC需要的jar包. 2.添加Web.xml配置文件中关于SpringMVC的配置 1 2 3 4 5 6 ...
- Delphi for iOS开发指南(5):在iOS应用程序中使用Calendar组件来选择日期
http://blog.csdn.net/delphiteacher/article/details/8923519 在FireMonkey iOS应用程序中的Calendar FireMonkey使 ...
- git archive命令详解
git archive可以将加了tag的某个版本打包提取出来,例如: git archive -v --format= > v0..zip --format表示打包的格式,如zip,-v表示对应 ...
- LeetCode147:Insertion Sort List
题目: Sort a linked list using insertion sort. 解题思路: 按题目要求,直接进行插入排序 实现代码: #include <iostream> us ...
- 对Cookie和Session的理解
本篇文章系自己总结经验,如果有朋友感觉哪里有问题,欢迎留言评论,谢谢~! Cookie和Session的产生背景: 在动态页面里面,每个变量都是有有效期的,所有的变量的最大生命周期就是一个脚本的周期( ...
- C#基础复习(1) 之 Struct与Class的区别
参考资料 [1] 毛星云[<Effective C#>提炼总结] https://zhuanlan.zhihu.com/p/24553860 [2] <C# 捷径教程> [3] ...
- PropertyPlaceHolderConfigurer中的location是不是用错了?
本文由作者张远道授权网易云社区发布. spring中常用PropertyPlaceHolderConfigurer来读取properties配置文件的配置信息.常用的配置方式有两种,一种是使用loca ...
- Mysql 练习题一
库操作: 1. 创建 数据库 create database db1; 2. 使用数据库 use db1 3. 查看表 show tables; 4. 删除 drop database db1 ...
- 深入学习c++--左值引用和右值引用
#include <iostream> #include <string> #include <vector> using namespace std; int m ...
- 【新题】ocp 062 2019年考试新题-3
3.A database is open read write and the instance has multiple sessions some of which have active tra ...