[BZOJ5125]小Q的书架(决策单调性+分治DP+树状数组)
显然有决策单调性,但由于逆序对不容易计算,考虑分治DP。
solve(k,x,y,l,r)表示当前需要选k段,待更新的位置为[l,r],这些位置的可能决策点区间为[x,y]。暴力计算出(l+r)/2的决策位置s,两边递归下去继续操作。solve(k,x,s,l,mid-1),solve(k,s,y,mid+1,r)。
注意到每个位置每层只会被一个区间遍历到,加上树状数组在线更新逆序对的复杂度,总复杂度为$O(kn\log^2n)$
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
using namespace std; const int N=,inf=;
int n,m,a[N],f[][N],c[N],l,r,cur; void add(int x,int k){ for (; x<=n; x+=x&-x) c[x]+=k; }
int que(int x){ int res=; for (; x; x-=x&-x) res+=c[x]; return res; } void upd(int L,int R){
while (r<R) cur+=r-l+-que(a[r+]),add(a[++r],);
while (l>L) cur+=que(a[l-]),add(a[--l],);
while (r>R) add(a[r--],-),cur-=r-l+-que(a[r+]);
while (l<L) add(a[l++],-),cur-=que(a[l-]);
} void solve(int k,int x,int y,int l,int r){
if (l>r) return;
int mid=(l+r)>>,id=min(mid-,y);
f[k][mid]=inf;
for (int i=min(mid-,y); i>=x; i--){
upd(i+,mid);
if (f[k-][i]+cur<=f[k][mid]) f[k][mid]=f[k-][i]+cur,id=i;
}
solve(k,x,id,l,mid-); solve(k,id,y,mid+,r);
} int main(){
freopen("bzoj5125.in","r",stdin);
freopen("bzoj5125.out","w",stdout);
scanf("%d%d",&n,&m); l=; r=;
rep(i,,n) scanf("%d",&a[i]);
rep(i,,n) f[][i]=inf;
rep(j,,m) solve(j,,n-,,n);
printf("%d\n",f[m][n]);
return ;
}
[BZOJ5125]小Q的书架(决策单调性+分治DP+树状数组)的更多相关文章
- [APIO2019] [LOJ 3146] 路灯 (cdq分治或树状数组套线段树)
[APIO2019] [LOJ 3146] 路灯 (cdq分治或树状数组套线段树) 题面 略 分析 首先把一组询问(x,y)看成二维平面上的一个点,我们想办法用数据结构维护这个二维平面(注意根据题意这 ...
- bzoj 1176 cdq分治套树状数组
题面: 维护一个W*W的矩阵,初始值均为S.每次操作可以增加某格子的权值,或询问某子矩阵的总权值.修改操作数M<=160000,询问数Q<=10000,W<=2000000. Inp ...
- BZOJ5125 小Q的书架(决策单调性+动态规划+分治+树状数组)
设f[i][j]为前i个划成j段的最小代价,枚举上个划分点转移.容易想到这个dp有决策单调性,感性证明一下比较显然.如果用单调栈维护决策就不太能快速的求出逆序对个数了,改为使用分治,移动端点时树状数组 ...
- CF833D Red-Black Cobweb 点分治、树状数组
传送门 统计所有路径的边权乘积的乘积,不难想到点分治求解. 边权颜色比例在\([\frac{1}{2},2]\)之间,等价于\(2B \geq R , 2R \geq B\)(\(R,B\)表示红色和 ...
- 【BZOJ4285】使者 cdq分治+扫描线+树状数组
[BZOJ4285]使者 Description 公元 8192 年,人类进入星际大航海时代.在不懈的努力之下,人类占领了宇宙中的 n 个行星,并在这些行星之间修建了 n - 1 条星际航道,使得任意 ...
- HDU 5618 Jam's problem again(三维偏序,CDQ分治,树状数组,线段树)
Jam's problem again Time Limit: 5000/2500 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Othe ...
- bzoj2253纸箱堆叠(动态规划+cdq分治套树状数组)
Description P 工厂是一个生产纸箱的工厂.纸箱生产线在人工输入三个参数 n p a , 之后,即可自动化生产三边边长为 (a mod P,a^2 mod p,a^3 mod P) (a^4 ...
- BZOJ 2716 [Violet 3]天使玩偶 (CDQ分治、树状数组)
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2716 怎么KD树跑得都那么快啊..我写的CDQ分治被暴虐 做四遍CDQ分治,每次求一个 ...
- bzoj3730 震波 [动态点分治,树状数组]
传送门 思路 如果没有强制在线的话可以离线之后CDQ分治随便搞. 有了强制在线之后--可能可以二维线段树?然而我不会算空间. 然后我们莫名其妙地想到了动态点分治,然后这题就差不多做完了. 点分树有一个 ...
随机推荐
- 【文件上传】文件上传的form表单提交方式和ajax异步上传方式对比
一.html 表单代码 …… <input type="file" class="file_one" name="offenderExcelFi ...
- Spring编程式和声明式事务实例讲解
Java面试通关手册(Java学习指南):https://github.com/Snailclimb/Java_Guide 历史回顾: 可能是最漂亮的Spring事务管理详解 Spring事务管理 S ...
- 【FCS NOI2018】福建省冬摸鱼笔记 day3
第三天. 计算几何,讲师:叶芃(péng). dalao们日常不记笔记.@ghostfly233说他都知道了,就盼着自适应辛普森积分. 我计算几何基础不好……然而还是没怎么讲实现,感觉没听什么东西进去 ...
- [HBase]mem store flusher 流程
- Python访问MySQL(1):初步使用PyMySQL包
Windows 10家庭中文版,MySQL 5.7.20 for Win 64,Python 3.6.4,PyMySQL 0.8.1,2018-05-08 ---- 使用Python访问MySQL数据 ...
- docker容器配置独立ip
一般安装docker后都会通过端口转发的方式使用网络,比如 “-p 2294:22” 就将2294抓发到22端口来提供sftp服务,这样使用起来没有问题.但端口号很难记忆,如果前边有nginx等抓发工 ...
- Linux入门(二)Shell基本命令
上一篇讲了普通用户切换到root用户,今天补充一点,对于Debian和Ubuntu用户,安装时候只有一个普通用户注册,在需要root权限时,我们可以在普通用户模式下输入sudo这个命令运行某些相关特权 ...
- SQL农历转换函数(显示中文格式,加入润月的显示)
if object_id('fn_getlunar') is not null drop function fn_getlunar go create function dbo.fn_getlunar ...
- Effective STL 学习笔记: Thread Safety and STL Container
Table of Contents 1. STL, Thread and SGI 2. STL and Lock 2.1. RAII 2.2. Use Lock in STL 1 STL, Threa ...
- 从一道简单的dp题中学到的...
今天想学点动态规划的知识,于是就看了杭电的课件,数塔问题啊,LCS啊都是比较经典的动规了,然后随便看了看就开始做课后练习题... HDOJ 1421 搬寝室 http://acm.hdu.edu.cn ...