BZOJ2111 ZJOI2010排列计数
根据Pi>Pi/2可以看出来这是一个二叉树
所以我们可以用树形DP的思想
f[i]=f[i<<1]*f[i<<1|1]*C(s[i]-1,s[i<<1]),s是子树大小
然后求组合数可以用卢卡斯定理
BZ上加强数据后我那个线性求n!逆元就挂掉了,于是就直接算了。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2e6+;
ll f[N<<],fac[N],inv[N],s[N<<];
ll n,mod;
ll qmod(ll a,ll b)
{
ll ans=;
while(b)
{
if(b&)ans=ans*a%mod;
a=a*a%mod;b>>=;
}
return ans;
}
ll C(ll a,ll b)
{
if(a<b)return ;
if(a<mod&&b<mod)return fac[a]*qmod(fac[b]*fac[a-b]%mod,mod-)%mod;
return C(a/mod,b/mod)*C(a%mod,b%mod)%mod;
}
int main()
{
scanf("%lld%lld",&n,&mod);
fac[]=;
for(int i=;i<=n;++i)fac[i]=i*fac[i-]%mod;
for(int i=n;i;--i)
{
s[i]=s[i<<]+s[(i<<)|]+;f[i]=;
if((i<<)<=n)f[i]=f[i]*f[i<<]%mod;
if((i<<|)<=n)f[i]=f[i]*f[i<<|]%mod;
f[i]=f[i]*C(s[i]-,s[i<<])%mod;
}
printf("%lld",f[]);
return ;
}
BZOJ2111 ZJOI2010排列计数的更多相关文章
- bzoj2111 [ZJOI2010]排列计数
Description 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic ...
- 【BZOJ2111】[ZJOI2010]排列计数(组合数学)
[BZOJ2111][ZJOI2010]排列计数(组合数学) 题面 BZOJ 洛谷 题解 就是今年九省联考\(D1T2\)的弱化版? 直接递归组合数算就好了. 注意一下模数可以小于\(n\),所以要存 ...
- [ZJOI2010]排列计数 (组合计数/dp)
[ZJOI2010]排列计数 题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有 ...
- 洛谷 P2606 [ZJOI2010]排列计数 解题报告
P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...
- P2606 [ZJOI2010]排列计数
P2606 [ZJOI2010]排列计数 因为每个结点至多有一个前驱,所以我们可以发现这是一个二叉树.现在我们要求的就是以1为根的二叉树中,有多少种情况,满足小根堆的性质. 设\(f(i)\)表示以\ ...
- BZOJ2111:[ZJOI2010]排列计数——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=2111 https://www.luogu.org/problemnew/show/P2606#su ...
- 洛谷P2606 [ZJOI2010]排列计数(组合数 dp)
题意 题目链接 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案 ...
- bzoj2111 Perm 排列计数
称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大,只能输 ...
- [ZJOI2010]排列计数
题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...
随机推荐
- Python练习-os模块练习-还算是那么回事儿
# 编辑者:闫龙 # 小程序:根据用户输入选择可以完成以下功能: # 创建文件,如果路径不存在,创建文件夹后再创建文件 # 能够查看当前路径 # 在当前目录及其所有子目录下查找文件名包含指定字符串的文 ...
- LVS ARP广播产生的问题和处理方式【转】
转自 LVS ARP广播产生的问题和处理方式-htckiller2010-ChinaUnix博客http://blog.chinaunix.net/uid-24960107-id-193084.htm ...
- python3 切换工作文件夹
python3 默认的工作文件夹在Python安装路径下.如下为查看工作文件夹路径: >>> import os >>> os.getcwd() 'D:\\Work ...
- python中set
集合update方法:是把要传入的元素拆分,做为个体传入到集合中,例如: >>> a = set('boy') >>> a.update('python') > ...
- 记一次对 Laravel-permission 项目的性能优化
我最近研究分析了在 SWIS上面创建的项目的性能.令人惊讶的是,最耗费性能的方法之一是优秀的 spatie/laravel-permission 包造成的. 经过查阅更多资料和研究,发现一个可能明显 ...
- SQL Server和Access数据读写
1.查询Access中数据的方法: select * from OpenRowSet('microsoft.jet.oledb.4.0',';database=c:/db2.mdb','select ...
- JAVA 转义字符串中的特殊字符
package test; import java.util.regex.Matcher; import java.util.regex.Pattern; public class Test { pu ...
- MIT6.006Lec02:DocumentDistance
MIT6.006是算法导论,Lec02讲的是Document Distance(文档距离),比如比较两个文档相似度或者搜索引擎中都会用到. 计算步骤为: 1.将每个文档分离为单词 2.统计词频 3.计 ...
- Elasticsearch介绍及安装部署
本节内容: Elasticsearch介绍 Elasticsearch集群安装部署 Elasticsearch优化 安装插件:中文分词器ik 一.Elasticsearch介绍 Elasticsear ...
- progressDialog和子线程模拟显示拷贝进度
package com.example.wang.myapplication; import android.app.ProgressDialog; import android.os.Bundle; ...