设“共n个叶子,且每个非叶节点至少有两个子节点”的树的数量为f[n],再乘2就是本题答案。

设状态d(i,j)表示每棵子树最多包含i个叶子、一共有j个叶子的树的个数。于是f(n)=d(n-1,n)。假设恰好包含i个叶子的子树有p棵,那么这些树的组合数等于从f(i)棵树中选择p棵树的方案数,即C(f(i)+p-1,p),再去乘上剩下的(包含叶子树少于i的)子树的方案数d(i-1,j-p*i),因此d(i,j)=sum{C(f(i)+p-1,p)*d(i-1,j-p*i) | p>=0,p*i<=j}

边界是:i>=0时d(i,0) = 1,i>=1时d(i,1) = 1,但d(0,i) = 0。

def C(n, m):
res = 1;
for i in range(m):
res *= (n-i);
for i in range(1,m+1):
res //= i;
return res; f = [0] + [1] + [0] * 33;
d = [([0] * 35) for i in range(35)];
n = 30;
for i in range(n+1):
d[i][0]=1;
for i in range(1,n+1):
d[i][1]=1;
d[0][i]=0;
for i in range(1,n+1):
for j in range(2,n+1):
for p in range(0,j+1,i):
d[i][j] += C(f[i]+p//i-1, p//i) * d[i-1][j-p];
f[i+1] = d[i][i+1];
while(True):
n=int(input());
if(n==0):
break;
if(n==1):
print(1);
else:
print(2*f[n]);

【Python3】【树形dp】uva10253 Series-Parallel Networks的更多相关文章

  1. UVA 10253 Series-Parallel Networks (树形dp)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Series-Parallel Networks Input: standard ...

  2. poj3162(树形dp+优先队列)

    Walking Race Time Limit: 10000MS   Memory Limit: 131072K Total Submissions: 5409   Accepted: 1371 Ca ...

  3. POJ 3162.Walking Race 树形dp 树的直径

    Walking Race Time Limit: 10000MS   Memory Limit: 131072K Total Submissions: 4123   Accepted: 1029 Ca ...

  4. 【题解】poj 3162 Walking Race 树形dp

    题目描述 Walking RaceTime Limit: 10000MS Memory Limit: 131072KTotal Submissions: 4941 Accepted: 1252Case ...

  5. poj3417 LCA + 树形dp

    Network Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4478   Accepted: 1292 Descripti ...

  6. COGS 2532. [HZOI 2016]树之美 树形dp

    可以发现这道题的数据范围有些奇怪,为毛n辣么大,而k只有10 我们从树形dp的角度来考虑这个问题. 如果我们设f[x][k]表示与x距离为k的点的数量,那么我们可以O(1)回答一个询问 可是这样的话d ...

  7. 【BZOJ-4726】Sabota? 树形DP

    4726: [POI2017]Sabota? Time Limit: 20 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 128  Solved ...

  8. 树形DP+DFS序+树状数组 HDOJ 5293 Tree chain problem(树链问题)

    题目链接 题意: 有n个点的一棵树.其中树上有m条已知的链,每条链有一个权值.从中选出任意个不相交的链使得链的权值和最大. 思路: 树形DP.设dp[i]表示i的子树下的最优权值和,sum[i]表示不 ...

  9. 树形DP

    切题ing!!!!! HDU  2196 Anniversary party 经典树形DP,以前写的太搓了,终于学会简单写法了.... #include <iostream> #inclu ...

  10. BZOJ 2286 消耗战 (虚树+树形DP)

    给出一个n节点的无向树,每条边都有一个边权,给出m个询问,每个询问询问ki个点,问切掉一些边后使得这些顶点无法与顶点1连接.最少的边权和是多少.(n<=250000,sigma(ki)<= ...

随机推荐

  1. zTree静态树与动态树的用法——(七)

    0.[简介] zTree 是利用 JQuery 的核心代码,实现一套能完成大部分常用功能的 Tree 插件 兼容 IE.FireFox.Chrome 等浏览器 在一个页面内可同时生成多个 Tree 实 ...

  2. YUV422(UYVY)转RGB565源代码及其讲解.md

    目录 前言 源码 代码分析 YUV三个分量的关系 循环遍历 结束语 前言 使用zmm220核心板,IFACE102版本的内核等,4300型号的LCD,XC7011_SC1145摄像头,亲测有效. 本文 ...

  3. select()函数用法三之poll函数

    poll是Linux中的字符设备驱动中有一个函数,Linux 2.5.44版本后被epoll取代,作用是把当前的文件指针挂到等待队列,和select实现功能差不多. poll()函数:这个函数是某些U ...

  4. ajax局部刷新后里面的jquery事件失效的解决方法

    live() 与bind()作用基本一样. 最重要区别:live()可以将事件绑定到当前和将来的元素(eg:为id=zy元素绑定点击事件,而当你用js动态生成一个节点并插入到dom文档结构中时,如果你 ...

  5. 007_苹果Mac系统锁屏不待机效果设置方法介绍

    Mac如何设置锁屏不断网?Mac如何设置锁屏不待机?这是一个非常麻烦的设置,有时候一锁屏幕电脑就跟着待机了,这非常的麻烦,所以今天小编就用图文教程的方式教大家Mac如何设置锁屏不断网Mac如何设置锁屏 ...

  6. 23 The Laws of Reflection 反射定律:反射包的基本原理

    The Laws of Reflection  反射定律:反射包的基本原理 6 September 2011 Introduction 介绍 Reflection in computing is th ...

  7. Python基础:内置异常(未完待续)

    本文根据Python 3.6.5的官文Built-in Exceptions编写,不会很详细,仅对Python的内置异常进行简单(重难点)介绍——很多异常都可以从名称判断出其意义,罗列所有的内置异常. ...

  8. MongoDB-MongoDB重装系统后恢复

    重装系统后,把原mongoDB安装目录和原mongoDB的data目录拷贝到新硬盘的D盘上. 恢复的方法如下. 1.D:\Mongodb里放着mongod.cfg和data C:\Users\Admi ...

  9. caffe+win7+vs2013 仅CPU环境安装

    笔者对深度学习一直充满着好奇与兴趣,之前学校都是研究图像处理的特征点方式,机器学习使用也不多,别提深度学习了. 在看了李宏毅大佬的PPT后,有了初步的认识,虽然是渣渣电脑,也想自己跑几个深度模型. 说 ...

  10. ZooKeeper的基本概念(二)

    第一篇博文,我们对Zookeeper有了一个简单的认识,而且比较浅显,易懂,这篇博文,我们了解它的基本概念,如下图所示: 了解它的基本概念,有助于我们后面的学习,虽然今天的文章都是概念性质的内容,但是 ...