https://www.lydsy.com/JudgeOnline/problem.php?id=4037

你有一个长度为n的数字串。定义f(S)为将S拆分成若干个1~m的数的和的方案数,比如m=2时,f(4)=5。

你可以将这个数字串分割成若干个数字(允许前导0),将他们加起来,求f,并求和。比如g(123)=f(1+2+3)+f(1+23)+f(12+3)+f(123)。

已知字符串和m后求答案对998244353(7*17*223+1,一个质数)取模后的值。

神仙?(亦或是我从来没见过如此神奇的快速幂于是强行神仙?)

参考:https://blog.csdn.net/H_Anonymity/article/details/78348610

$f$数组一个矩乘快速幂求出,然而并没有卵用。

我们令$f[i]$矩乘所需要的矩阵为$h[i]$。

考虑使用dp求$g$,按位考虑,我们每次加上这位所能带来的贡献。

……或者说,乘上?因为$f(x1+x2)=$初始矩阵$*h[x1]*h[x2]$。

于是令$dp[i]$表示前$i$位的求$g$矩阵,则我们有:

$dp[i]=\sum_{j=0}^{i-1}dp[j]*M_j$,其中$M_j=h[j+1$至$i$字符组成的数$]$。

为了求出$M$,我们可以求$f[i][j]$表示$h[i*10^j]$这样我们就能很快捷的求出来了。

听说这个就是神奇的十进制快速幂??

#include<queue>
#include<cmath>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int p=;
const int L=;
char s[L];
int n,m;
struct matrix{
ll g[][];
matrix(){
memset(g,,sizeof(g));
}
inline void one(){
for(int i=;i<m;i++)g[i][i]=;
}
matrix operator *(const matrix &b)const{
matrix c;
for(int i=;i<m;i++)
for(int j=;j<m;j++)
for(int k=;k<m;k++)
(c.g[i][j]+=g[i][k]*b.g[k][j]%p)%=p;
return c;
}
matrix operator +(const matrix &b)const{
matrix c;
for(int i=;i<m;i++)
for(int j=;j<m;j++)
c.g[i][j]=(g[i][j]+b.g[i][j])%p;
return c;
}
}f[][L],dp[L];
matrix qpow(matrix x,ll y){
matrix res;res.one();
while(y){
if(y&)res=res*x;
x=x*x;y>>=;
}
return res;
}
void solve(){
f[][].one();
for(int i=;i<m;i++)f[][].g[i][]=;
for(int i=;i<m;i++)f[][].g[i-][i]=; for(int i=;i<=n;i++)f[][i].one(),f[][i]=qpow(f[][i-],);
for(int i=;i<=;i++)
for(int j=;j<=n;j++)f[i][j]=f[i-][j]*f[][j];
dp[].one();
for(int i=;i<=n;i++){
matrix now=f[s[i]-''][];
for(int j=i-;j>=;j--){
dp[i]=dp[i]+dp[j]*now;
if(j)now=now*f[s[j]-''][i-j];
}
}
}
int main(){
scanf("%s%d",s+,&m);n=strlen(s+);
solve();
printf("%d\n",dp[n].g[][]);
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

BZOJ4037:[HAOI2015]数字串拆分——题解的更多相关文章

  1. bzoj4037 [HAOI2015]数字串拆分

    Description 你有一个长度为n的数字串.定义f(S)为将S拆分成若干个1~m的数的和的方案数,比如m=2时,f(4)=5,分别为4=1+1+1+1你可以将这个数字串分割成若干个数字(允许前导 ...

  2. [HAOI2015]数字串拆分

    题目描述 你有一个长度为n的数字串.定义f(S)为将S拆分成若干个1~m的数的和的方案数,比如m=2时,f(4)=5,分别为4=1+1+1+1你可以将这个数字串分割成若干个数字(允许前导0),将他们加 ...

  3. 洛谷3176 [HAOI2015]数字串拆分 (矩阵乘法+dp)

    qwq真的是一道好题qwq自己做基本是必不可能做出来的. 首先,如果这个题目只是求一个\(f\)数组的话,那就是一道裸题. 首先,根据样例 根据题目描述,我们能发现其实同样数字的不同排列,也是属于不同 ...

  4. BZOJ 4037 [HAOI2015]数字串拆分 ——动态规划

    拆分的情况下,发现f数组本身并不是很好递推. 因为f(123)=f(123)/f(12+3)/f(1+2+3). 然后考虑f可以怎么表示f(n)=a0*M^n M为转移矩阵. 然后发现 f(x+y)= ...

  5. bzoj 4037: [HAOI2015]数字串拆分【dp+矩阵加速】

    首先f长得就很像能矩阵优化的,先构造转移矩阵(这里有一点神奇的地方,我看网上的blog和我构造的矩阵完全不一样还以为我的构造能力又丧失了,后来惊奇的发现我把那篇blog里的构造矩阵部分换成我的构造方式 ...

  6. loj#2128. 「HAOI2015」数字串拆分 矩阵乘法

    目录 题目链接 题解 代码 题目链接 loj#2128. 「HAOI2015」数字串拆分 题解 \(f(s)\)对于\(f(i) = \sum_{j = i - m}^{i - 1}f(j)\) 这个 ...

  7. 【LOJ】#2128. 「HAOI2015」数字串拆分

    题解 题中给的函数可以用矩阵快速幂递推 我们记一个数组dp[i](这个数组每个元素是一个矩阵)表示从1到i所有的数字经过拆分矩阵递推的加和 转移方法是 \(dp[i] = \sum_{j = 0}^{ ...

  8. 解决 PHPExcel 长数字串显示为科学计数

    解决 PHPExcel 长数字串显示为科学计数 在excel中如果在一个默认的格中输入或复制超长数字字符串,它会显示为科学计算法,例如身份证号码,解决方法是把表格设置文本格式或在输入前加一个单引号. ...

  9. Openjudge 1.13-40 提取数字串按数值排序

    40:提取数字串按数值排序 查看 总时间限制:  1000ms 内存限制:  65536kB 描述 给定一个字符串,请将其中的所有数字串提取,并将每个数字串作为整数看待(假设可以用int 表示),按从 ...

随机推荐

  1. TPO-22 C2 Revise a music history paper

    第 1 段 1.Listen to part of a conversation between a student and his music history professor. :听一段学生和音 ...

  2. 【厚积薄发】Crunch压缩图片的AssetBundle打包

    这是第133篇UWA技术知识分享的推送.今天我们继续为大家精选了若干和开发.优化相关的问题,建议阅读时间10分钟,认真读完必有收获. UWA 问答社区:answer.uwa4d.com UWA QQ群 ...

  3. php-7.1.11-64位

    php-7.1.11-Win32-VC14-x64.zip 链接:https://pan.baidu.com/s/1w8-fJo8-oWrriHyWpU5Fpg 提取码:bd0e 复制这段内容后打开百 ...

  4. SICP读书笔记 2.2

    SICP CONCLUSION 让我们举起杯,祝福那些将他们的思想镶嵌在重重括号之间的Lisp程序员 ! 祝我能够突破层层代码,找到住在里计算机的神灵! 目录 1. 构造过程抽象 2. 构造数据抽象 ...

  5. k8s学习-资源管理

    在云计算领域,资源可被分为计算资源.网络资源.存储资源三大类,也可被分别称作为计算云.网络云.存储云.在以容器为核心的云平台上,应用容器镜像也是一种资源. 一.计算资源管理 计算资源在云平台上主要指应 ...

  6. python3去除字符串中括号及括号里面的内容

    a = """ <option value="search-alias=arts-crafts-intl-ship">Arts & ...

  7. 图片人脸检测(OpenCV版)

    图片人脸检测 人脸检测使用到的技术是OpenCV,上一节已经介绍了OpenCV的环境安装,点击查看. 功能展示 识别一种图上的所有人的脸,并且标出人脸的位置,画出人眼以及嘴的位置,展示效果图如下: 多 ...

  8. 20135234mqy-——信息安全系统设计基础第三周学习总结

    (1)计算机将信息按位编码,通常组成字节序列.用不同的编码方式表示整数,师叔和字符串.不同的计算机模型在编码数字和多字节数据中的字节排序时使用不同的约定. (2)C语言的设计可以包容多种不同字长和数字 ...

  9. iOS自学-混合编程

    OC调用swift,引入头文件 #improt "工程名字-swift.h" swift调用OC,在桥梁文件里面引入OC文件 的头文件 尽情混合编程吧...

  10. servlet的方法解析

    一般来说servlet继承了HttpServlet,我们可以覆盖某些方法来实现自己的功能. Init()和Init(ServletConfig config),我们一般只需覆盖后者,因为这个可以从se ...