BZOJ2800 [Poi2012]Leveling Ground 【扩展欧几里得 + 三分 + 堆】
题目链接
题解
区间加极难操作,差分之后可转化为两点一加一减
那么现在问题就将每个点暂时独立开来
先判定每个点是否被\((A,B)\)整除,否则无解
之后我们先将\(A,B\)化为互质,所有数除一个\((A,B)\)
求得
\]
那么对于点\(d[i]\),满足
\]
其中\(k\)可以取任意值
我们对于单点的目标,是最小化
\]
两个绝对值相加是一个单峰函数,利用三分法即可得出\(k\)
从而得到每个点目前最优解\(X[i] = xd[i] + kB,Y[i] = yd[i] - kA\)
但是我们做到了单个点最优,但整体不一定合法,我们必须满足正负操作次数相同
即
\]
而由于\(\sum d[i] = 0\)
故我们只需保证\(T = \sum X[i] = 0\)
显然我们只需改变\(\frac{T}{B}\)次
对于每个\(X[i]\)我们计算出它改变一次的代价,用一个堆维护即可
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<cmath>
#include<map>
#define REP(i,n) for (register int i = 1; i <= (n); i++)
#define cls(s) memset(s,0,sizeof(s))
#define LL long long int
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
struct pr{LL v,i;};
inline bool operator <(const pr& a,const pr& b){
return a.v > b.v;
}
priority_queue<pr> q;
LL n,A,B,X,Y,d[maxn],h[maxn],xx[maxn],yy[maxn],dd;
void exgcd(LL a,LL b,LL& d,LL& x,LL& y){
if (!b){d = a; x = 1; y = 0;}
else exgcd(b,a % b,d,y,x),y -= (a / b) * x;
}
inline LL cost(int i,LL k){
return abs(X * d[i] + k * B) + abs(Y * d[i] - k * A);
}
void workmin(){
REP(i,n){
LL l = -INF,r = INF,lmid,rmid,L,R,K;
while (r - l >= 3){
lmid = (l + l + r) / 3;
rmid = (r + l + r) / 3;
L = cost(i,lmid);
R = cost(i,rmid);
if (L == R){
if (cost(i,lmid - 1) < L) r = rmid;
else l = lmid;
}
else if (L > R) l = lmid;
else r = rmid;
}
K = l;
for (int j = l + 1; j <= r; j++)
if (cost(i,j) < cost(i,K)) K = j;
xx[i] = X * d[i] + K * B;
yy[i] = Y * d[i] - K * A;
}
}
inline LL price(int i){
return abs(yy[i] - dd * A) + abs(xx[i] + dd * B) - abs(xx[i]) - abs(yy[i]);
}
void print(){
//REP(i,n) printf("(%lld,%lld)\n",xx[i],yy[i]); puts("");
LL ans = 0;
REP(i,n) ans += abs(xx[i]) + abs(yy[i]);
printf("%lld\n",ans >> 1);
}
void workok(){
LL sum = 0;
REP(i,n) sum += xx[i];
sum /= B;
dd = sum > 0 ? -1 : 1; sum = abs(sum);
REP(i,n) q.push((pr){price(i),i});
pr u;
while (sum--){
u = q.top(); q.pop();
xx[u.i] += dd * B;
yy[u.i] -= dd * A;
q.push((pr){price(u.i),u.i});
}
}
int main(){
n = read(); A = read(); B = read(); LL D;
exgcd(A,B,D,X,Y); A /= D; B /= D;
REP(i,n){
h[i] = read();
if (h[i] % D){puts("-1"); return 0;}
h[i] /= D; d[i] = h[i] - h[i - 1];
}
n++;
d[n] = -h[n - 1];
workmin();
workok();
print();
return 0;
}
BZOJ2800 [Poi2012]Leveling Ground 【扩展欧几里得 + 三分 + 堆】的更多相关文章
- [zoj3593]扩展欧几里得+三分
题意:给一个数A,有6种操作,+a,-a,+b,-b,+(a+b),-(a+b),每次选择一种,用最少的次数变成B. 思路:由于不同的操作先后顺序对最后的结果没有影响,并且加一个数与减一个相同的数不能 ...
- Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) C.Ray Tracing (模拟或扩展欧几里得)
http://codeforces.com/contest/724/problem/C 题目大意: 在一个n*m的盒子里,从(0,0)射出一条每秒位移为(1,1)的射线,遵从反射定律,给出k个点,求射 ...
- UVA 12169 Disgruntled Judge 枚举+扩展欧几里得
题目大意:有3个整数 x[1], a, b 满足递推式x[i]=(a*x[i-1]+b)mod 10001.由这个递推式计算出了长度为2T的数列,现在要求输入x[1],x[3],......x[2T- ...
- UVA 10090 Marbles 扩展欧几里得
来源:http://www.cnblogs.com/zxhl/p/5106678.html 大致题意:给你n个球,给你两种盒子.第一种盒子每个盒子c1美元,可以恰好装n1个球:第二种盒子每个盒子c2元 ...
- POJ 1061 青蛙的约会 扩展欧几里得
扩展欧几里得模板套一下就A了,不过要注意刚好整除的时候,代码中有注释 #include <iostream> #include <cstdio> #include <cs ...
- 【64测试20161112】【Catalan数】【数论】【扩展欧几里得】【逆】
Problem: n个人(偶数)排队,排两行,每一行的身高依次递增,且第二行的人的身高大于对应的第一行的人,问有多少种方案.mod 1e9+9 Solution: 这道题由1,2,5,14 应该想到C ...
- poj 2891 扩展欧几里得迭代解同余方程组
Reference: http://www.cnblogs.com/ka200812/archive/2011/09/02/2164404.html 之前说过中国剩余定理传统解法的条件是m[i]两两互 ...
- poj 2142 扩展欧几里得解ax+by=c
原题实际上就是求方程a*x+b*y=d的一个特解,要求这个特解满足|x|+|y|最小 套模式+一点YY就行了 总结一下这类问题的解法: 对于方程ax+by=c 设tm=gcd(a,b) 先用扩展欧几里 ...
- poj 1061 扩展欧几里得解同余方程(求最小非负整数解)
题目可以转化成求关于t的同余方程的最小非负数解: x+m*t≡y+n*t (mod L) 该方程又可以转化成: k*L+(n-m)*t=x-y 利用扩展欧几里得可以解决这个问题: eg:对于方程ax+ ...
随机推荐
- Controller组件- 集合点的功能-loadrunner
1.添加集合点功能的做法 ,注意在开始事务前加,不然就会把等待时间也加进去. 2.Controller 中也要开启集合点的功能,才能使用
- 如何在unix系统中用别的用户运行一个程序?
1.问题的缘由 实际开发系统的时候,经常需要用别的用户运行一个程序.比如,有些系统为保证系统安全,不允许使用root来运行.这里,我们总结了unix系统下如何解决这个问题的一些方法.同时,我们还讨论如 ...
- passwd命令详解
基础命令学习目录首页 passwd命令用于设置用户的认证信息,包括用户密码.密码过期时间等.系统管理者则能用它管理系统用户的密码.只有管理者可以指定用户名称,一般用户只能变更自己的密码. 语法 pas ...
- 解决iscroll.js上拉下拉刷新手指划出屏幕页面无法回弹问题
博客已迁移至http://zlwis.me. 使用过iscroll.js的上拉下拉刷新效果的朋友应该都碰到过这个问题:在iOS的浏览器中,上拉或下拉刷新时,当手指划出屏幕后,页面无法弹回.很多人因为解 ...
- 2017秋-软件工程第十二次作业(一)-PSP总结
[回顾]:回顾开学时的博客并回答相关问题 1.回想一下你曾经对计算机专业的畅想当初你是如何做出选择计算机专业的决定的?经过一个学期,你的看法改变了么,为什么?答:当初的决定是以前的事情,没有改变.经历 ...
- Notes of Daily Scrum Meeting(11.17)
Notes of Daily Scrum Meeting(11.17) 今天是第四周的周一,也就是说距离最后发布也只剩下一周的时间,但我们的工程里面还有很多的问题没有解决,我关注过 其他一两个小组,他 ...
- 014 C语言文法定义与C程序的推导过程
- 『编程题全队』Alpha 阶段冲刺博客Day3
1.每日站立式会议 1.会议照片 2.昨天已完成的工作统计 孙志威: 1.添加团队模块的标题栏 2.测试客户端和服务器之间的通讯基本连通性 3.完成团队模块的燃尽图模块 孙慧君: 1.完成了水印的设计 ...
- Robot Framework 教程 (6) - 使用条件表达式
本篇文章,主要对如何在Robot Framework中使用条件表达式做过程控制作说明. 按照Robot Framework的官方文档介绍,Robot Framework并不建议在TestCase或Ke ...
- 【转】正确的 Composer 扩展包安装方法
简单解释 composer install - 如有 composer.lock 文件,直接安装,否则从 composer.json 安装最新扩展包和依赖: composer update - 从 c ...