#\(\mathcal{\color{red}{Description}}\)

\(Link\)

\(FJ\)给他的牛棚的\(N(2≤N≤50,000)\)个隔间之间安装了\(N-1\)根管道,隔间编号从\(1\)到\(N\)。所有隔间都被管道连通了。

\(FJ\)有\(K(1≤K≤100,000)\)条运输牛奶的路线,第i条路线从隔间\(s_i\)运输到隔间\(t_i\)。一条运输路线会给它的两个端点处的隔间以及中间途径的所有隔间带来一个单位的运输压力,你需要计算压力最大的隔间的压力是多少。

#\(\color{red}{\mathcal{Solution}}\)

好的,今天学习了树上差分,感觉海星\(qwq\)。

树上差分

差分主要用来解决区间加减、单点查询一类问题,。那么所谓树上差分……顾名思义就是在树上搞差分,而在树上的操作就要丰富得多,可以支持链上修改、单点查询。很显然的是,树上差分遵循的原则应该是儿子加父亲减,从而达到逻辑关系一定的目的。而事实上一共有两种差分方式:

·边差分

边差分适用于更改边权对于普通的边差分而言,我们不妨把每条边的标记打在深度较大的点上因为并不可以打在深度小的点上,然后很显然的为了防止标记“蔓延”,所以我们要$$dif_u ++,dif_v++,dif_{LCA(u,v)} -= 2$$

·点差分

所谓点差分,就是指给定一段树上的链,执行修改操作。此时需要的是$$dif_u--,dif_v--,dif_{LCA(u,v)} --,dif_{father(LCA(u,v)}--$$跟边差分不同的是,我们现在每个点的\(dif\)是为了点服务的,所以我们的\(LCA\)也应当算上,那么就不能 \(-= 2\),而是转而对\(father(LCA)\)进行操作。

那么最后就是标准的\(dfs\)统计了,随便乱搞就行。

#include <cmath>
#include <cstdio>
#include <iostream>
#define MAXN 200010 using namespace std ;
struct edge{
int to, next ;
}e[MAXN << 1]; int head[MAXN], cnt ;
int N, M, A, B, C, i, j, Up, pre, res ;
int dif[MAXN], fa[MAXN][32], dep[MAXN], ans[MAXN] ; inline int qr(){
int k = 0 ; char c = getchar() ;
while(!isdigit(c)) c = getchar() ;
while(isdigit(c)) k = (k << 1) + (k << 3) + c - 48, c = getchar() ;
return k ;
}
inline void add(int u, int v){
e[++ cnt].to = v ;
e[cnt].next = head[u] ;
head[u] = cnt ;
}
void _build(int deep, int now, int f){
fa[now][0] = f ; dep[now] = deep ;
for(int k = head[now]; k ;k = e[k].next){
if(e[k].to == f) continue ;
_build(deep + 1, e[k].to, now) ;
}
}
void _get(int now){
for(int k = head[now]; k ; k = e[k].next){
if(e[k].to == fa[now][0]) continue ;
_get(e[k].to) ;
dif[now] += dif[e[k].to] ;
}
res = max(res, dif[now]) ;
}
inline void init(){
Up = log(N) / log(2) + 1 ;
for(i = 1; i <= Up; i ++)
for(j = 1; j <= N; j ++)
fa[j][i] = fa[fa[j][i - 1]][i - 1] ;
}
inline int LCA(int u, int v){
if(dep[u] < dep[v]) swap(u, v) ;
pre = dep[u] - dep[v] ;
for(j = 0; j <= Up; j ++) if((1 << j) & pre) u = fa[u][j] ;
if(u == v) return u ;
for(j = Up; j >= 0; j --) if(fa[u][j] != fa[v][j]) u = fa[u][j], v = fa[v][j] ;
return fa[v][0] ;
}
int main(){
cin >> N >> M ;
for(i = 1; i < N; i ++) A = qr(), B = qr(), add(A, B), add(B, A) ;
_build(1, 1, 0) ; init() ;
for(i = 1; i <= M; i ++){
A = qr(), B = qr(), C = LCA(A, B);
dif[A] ++, dif[B] ++ ;
dif[C] --, dif[fa[C][0]] -- ;
}
_get(1) ; cout << res ; return 0 ;
}

树上差分学习笔记 + [USACO15DEC]最大流$Max \ \ Flow \ \ By$的更多相关文章

  1. 【学术篇】树上差分--洛谷3128最大流Max Flow

    懒得贴题目,直接放不稳定的传送门(雾):点击前往暴风城(雾) 据说这题是BZOJ3490,但本蒟蒻没有权限╮(╯_╰)╭ 这题似乎就是裸树上差分... 对于树上(x,y)之间的路径上的点区间c[i]加 ...

  2. P3128 [USACO15DEC]最大流Max Flow(LCA+树上差分)

    P3128 [USACO15DEC]最大流Max Flow 题目描述 Farmer John has installed a new system of  pipes to transport mil ...

  3. luoguP3128 [USACO15DEC]最大流Max Flow 题解(树上差分)

    链接一下题目:luoguP3128 [USACO15DEC]最大流Max Flow(树上差分板子题) 如果没有学过树上差分,抠这里(其实很简单的,真的):树上差分总结 学了树上差分,这道题就极其显然了 ...

  4. 洛谷P3128 [USACO15DEC]最大流Max Flow

    P3128 [USACO15DEC]最大流Max Flow 题目描述 Farmer John has installed a new system of N-1N−1 pipes to transpo ...

  5. 洛谷P3128 [USACO15DEC]最大流Max Flow(树上差分)

    题意 题目链接 Sol 树上差分模板题 发现自己傻傻的分不清边差分和点差分 边差分就是对边进行操作,我们在\(u, v\)除加上\(val\),同时在\(lca\)处减去\(2 * val\) 点差分 ...

  6. 洛谷P3128 [USACO15DEC]最大流Max Flow (树上差分)

    ###题目链接### 题目大意: 给你一棵树,k 次操作,每次操作中有 a  b 两点,这两点路上的所有点都被标记一次.问你 k 次操作之后,整棵树上的点中被标记的最大次数是多少. 分析: 1.由于数 ...

  7. [USACO15DEC]最大流Max Flow(树上差分)

    题目描述: Farmer John has installed a new system of N−1N-1N−1 pipes to transport milk between the NNN st ...

  8. 洛谷3128 [USACO15DEC]最大流Max Flow——树上差分

    题目:https://www.luogu.org/problemnew/show/P3128 树上差分.用离线lca,邻接表存好方便. #include<iostream> #includ ...

  9. P3128 [USACO15DEC]最大流Max Flow (树上差分)

    题目描述 Farmer John has installed a new system of N-1N−1 pipes to transport milk between the NN stalls ...

随机推荐

  1. cf623A. Graph and String(二分图 构造)

    题意 题目链接 Sol 可以这样考虑,在原图中没有边相连的点的值肯定是a / c 那么直接二分图染色即可 #include<bits/stdc++.h> #define LL long l ...

  2. Mybatis:使用bean传值,当传入值为Null时,提示“无效的列类型”的解决办法

    问题描述:在使用mybatis对数据库执行更新操作时,parameterType为某个具体的bean,而bean中传入的参数为null时,抛出异常如下:org.mybatis.spring.MyBat ...

  3. CentOS /lib/ld-linux.so.2: bad ELF interpreter: No such file or directory

    使用的时候出现一个错误 bash: /usr/local/bin/rar: /lib/ld-linux.so.2: bad ELF interpreter: No such file or direc ...

  4. Android View的事件分发机制和滑动冲突解决方案

    这篇文章会先讲Android中View的事件分发机制,然后再介绍Android滑动冲突的形成原因并给出解决方案.因水平有限,讲的不会太过深入,只希望各位看了之后对事件分发机制的流程有个大概的概念,并且 ...

  5. 离线安装SharePoint2016

    离线安装SharePoint2016的过程中,遇到了不少问题,该文章将安装过程尽量详细描述,供自己后续参考,请不要嫌文章啰嗦哈. 本人使用的是Windows Server 2012 R2 Standa ...

  6. 5.servlet 上传文件

    一.maven依赖 <dependency> <groupId>commons-fileupload</groupId> <artifactId>com ...

  7. 对《SQL Server中tempdb的management》的一些更正和补充

    对<SQL Server中tempdb的management>的一些更正和补充 前几天看了这篇文章:SQL Server中tempdb的management 发现里面有些内容不是很准确 文 ...

  8. 无锁HashMap的原理与实现

    转载自: http://coolshell.cn/articles/9703.html 在<疫苗:Java HashMap的死循环>中,我们看到,java.util.HashMap并不能直 ...

  9. 分享:Windows2008重启后提示系统恢复选项的解决办法

    如题:WINdows2008服务器. 重启后提示系统恢复选项的解决办法 使用windows 2008后,不能启动的问题,重启后出现 修复系统选项 采用下面帖子中的部分命令搞定之. 我自己是直接使用:选 ...

  10. Oracle EBS PO采购订单更新

    DECLARE l_result NUMBER; l_progress NUMBER; l_errors PO_API_ERRORS_REC_TYPE; l_chg PO_CHANGES_REC_TY ...