树上差分学习笔记 + [USACO15DEC]最大流$Max \ \ Flow \ \ By$
#\(\mathcal{\color{red}{Description}}\)
\(FJ\)给他的牛棚的\(N(2≤N≤50,000)\)个隔间之间安装了\(N-1\)根管道,隔间编号从\(1\)到\(N\)。所有隔间都被管道连通了。
\(FJ\)有\(K(1≤K≤100,000)\)条运输牛奶的路线,第i条路线从隔间\(s_i\)运输到隔间\(t_i\)。一条运输路线会给它的两个端点处的隔间以及中间途径的所有隔间带来一个单位的运输压力,你需要计算压力最大的隔间的压力是多少。
#\(\color{red}{\mathcal{Solution}}\)
好的,今天学习了树上差分,感觉海星\(qwq\)。
树上差分
差分主要用来解决区间加减、单点查询一类问题,。那么所谓树上差分……顾名思义就是在树上搞差分,而在树上的操作就要丰富得多,可以支持链上修改、单点查询。很显然的是,树上差分遵循的原则应该是儿子加父亲减,从而达到逻辑关系一定的目的。而事实上一共有两种差分方式:
·边差分
边差分适用于更改边权对于普通的边差分而言,我们不妨把每条边的标记打在深度较大的点上因为并不可以打在深度小的点上,然后很显然的为了防止标记“蔓延”,所以我们要$$dif_u ++,dif_v++,dif_{LCA(u,v)} -= 2$$
·点差分
所谓点差分,就是指给定一段树上的链,执行修改操作。此时需要的是$$dif_u--,dif_v--,dif_{LCA(u,v)} --,dif_{father(LCA(u,v)}--$$跟边差分不同的是,我们现在每个点的\(dif\)是为了点服务的,所以我们的\(LCA\)也应当算上,那么就不能 \(-= 2\),而是转而对\(father(LCA)\)进行操作。
那么最后就是标准的\(dfs\)统计了,随便乱搞就行。
#include <cmath>
#include <cstdio>
#include <iostream>
#define MAXN 200010
using namespace std ;
struct edge{
int to, next ;
}e[MAXN << 1]; int head[MAXN], cnt ;
int N, M, A, B, C, i, j, Up, pre, res ;
int dif[MAXN], fa[MAXN][32], dep[MAXN], ans[MAXN] ;
inline int qr(){
int k = 0 ; char c = getchar() ;
while(!isdigit(c)) c = getchar() ;
while(isdigit(c)) k = (k << 1) + (k << 3) + c - 48, c = getchar() ;
return k ;
}
inline void add(int u, int v){
e[++ cnt].to = v ;
e[cnt].next = head[u] ;
head[u] = cnt ;
}
void _build(int deep, int now, int f){
fa[now][0] = f ; dep[now] = deep ;
for(int k = head[now]; k ;k = e[k].next){
if(e[k].to == f) continue ;
_build(deep + 1, e[k].to, now) ;
}
}
void _get(int now){
for(int k = head[now]; k ; k = e[k].next){
if(e[k].to == fa[now][0]) continue ;
_get(e[k].to) ;
dif[now] += dif[e[k].to] ;
}
res = max(res, dif[now]) ;
}
inline void init(){
Up = log(N) / log(2) + 1 ;
for(i = 1; i <= Up; i ++)
for(j = 1; j <= N; j ++)
fa[j][i] = fa[fa[j][i - 1]][i - 1] ;
}
inline int LCA(int u, int v){
if(dep[u] < dep[v]) swap(u, v) ;
pre = dep[u] - dep[v] ;
for(j = 0; j <= Up; j ++) if((1 << j) & pre) u = fa[u][j] ;
if(u == v) return u ;
for(j = Up; j >= 0; j --) if(fa[u][j] != fa[v][j]) u = fa[u][j], v = fa[v][j] ;
return fa[v][0] ;
}
int main(){
cin >> N >> M ;
for(i = 1; i < N; i ++) A = qr(), B = qr(), add(A, B), add(B, A) ;
_build(1, 1, 0) ; init() ;
for(i = 1; i <= M; i ++){
A = qr(), B = qr(), C = LCA(A, B);
dif[A] ++, dif[B] ++ ;
dif[C] --, dif[fa[C][0]] -- ;
}
_get(1) ; cout << res ; return 0 ;
}
树上差分学习笔记 + [USACO15DEC]最大流$Max \ \ Flow \ \ By$的更多相关文章
- 【学术篇】树上差分--洛谷3128最大流Max Flow
懒得贴题目,直接放不稳定的传送门(雾):点击前往暴风城(雾) 据说这题是BZOJ3490,但本蒟蒻没有权限╮(╯_╰)╭ 这题似乎就是裸树上差分... 对于树上(x,y)之间的路径上的点区间c[i]加 ...
- P3128 [USACO15DEC]最大流Max Flow(LCA+树上差分)
P3128 [USACO15DEC]最大流Max Flow 题目描述 Farmer John has installed a new system of pipes to transport mil ...
- luoguP3128 [USACO15DEC]最大流Max Flow 题解(树上差分)
链接一下题目:luoguP3128 [USACO15DEC]最大流Max Flow(树上差分板子题) 如果没有学过树上差分,抠这里(其实很简单的,真的):树上差分总结 学了树上差分,这道题就极其显然了 ...
- 洛谷P3128 [USACO15DEC]最大流Max Flow
P3128 [USACO15DEC]最大流Max Flow 题目描述 Farmer John has installed a new system of N-1N−1 pipes to transpo ...
- 洛谷P3128 [USACO15DEC]最大流Max Flow(树上差分)
题意 题目链接 Sol 树上差分模板题 发现自己傻傻的分不清边差分和点差分 边差分就是对边进行操作,我们在\(u, v\)除加上\(val\),同时在\(lca\)处减去\(2 * val\) 点差分 ...
- 洛谷P3128 [USACO15DEC]最大流Max Flow (树上差分)
###题目链接### 题目大意: 给你一棵树,k 次操作,每次操作中有 a b 两点,这两点路上的所有点都被标记一次.问你 k 次操作之后,整棵树上的点中被标记的最大次数是多少. 分析: 1.由于数 ...
- [USACO15DEC]最大流Max Flow(树上差分)
题目描述: Farmer John has installed a new system of N−1N-1N−1 pipes to transport milk between the NNN st ...
- 洛谷3128 [USACO15DEC]最大流Max Flow——树上差分
题目:https://www.luogu.org/problemnew/show/P3128 树上差分.用离线lca,邻接表存好方便. #include<iostream> #includ ...
- P3128 [USACO15DEC]最大流Max Flow (树上差分)
题目描述 Farmer John has installed a new system of N-1N−1 pipes to transport milk between the NN stalls ...
随机推荐
- python中面向切片编程(AOP)和装饰器
@函数名(类的描述符)相当于fuc = decorator(fuc) 装饰器: def deco(fuc): print('============') return fuc @deco def fo ...
- 使用servicestack连接redis
引言:作为少有的.net架构下的大型网站,stackoverflow曾发表了一篇文章,介绍了其技术体系,原文链接http://highscalability.com/blog/2011/3/3/sta ...
- 手动解除联合的ArcGIS Server
ArcGIS Server可以通过和Portal联合,组建WebGIS系统. 假如已经联合的ArcGIS Server已经无法访问,例如服务器宕机了,或者网络断开了.需要手动解除联合的ArcGIS S ...
- C语言各类型大小,结构体大小 sizeof(struct A)
C语言类型大小总览 编译器pack指令 #pragma pack(n)——定义n字节对齐 C++固有类型的对齐取编译器对齐与自身大小中较小的一个 32位C++默认8字节对齐.gcc编译器默认4字节对齐 ...
- public 类、default 类、内部类、匿名内部类
0.父类里private的成员变量,子类只有拥有权,没有使用权. 1.default 类 和public 类 package HelloWorld; public class HelloWorld { ...
- 回归JavaScript基础(八)
主题:引用类型包装类.单体内置对象的介绍. 对于我们开发人员来说,JavaScript有种引用类型一定很陌生!那就是基本包装类型:Boolean.Number和String.这也不是我们的错,主要这些 ...
- 关于easyUI的一些js方法
1. $("#dg").datagrid("load",{ "userName":$("#s_userName").va ...
- systemd 之 systemctl
Systemd 常规操作与彩蛋 一.前言 上了俩个月的RHCE工程师的班,收获颇多.话说回来,在 redhat 7 中有个非常重要的概念,即:systemd systemd 是 Linux 下的一款系 ...
- 非定制UIImagePickerController的使用
非定制UIImagePickerController的使用 效果: 源码: // // ViewController.m // ImagePic // // Created by XianMingYo ...
- OC实用转换model的工具
OC实用转换model的工具 说明 这是本人写的一个专门用来将json数据直接转换生成Model文件的工具,目的是为了让你从写Model文件的繁琐过程中解脱出来,提升效率以及减少出错的几率,工具的特点 ...