题目描述

给你 n 个盒子,有 q 个操作,操作有两种:

  • 第一种操作输入格式为"1 L R A B",表示将编号为L到R的盒子里的石头数量变为(X−L+1)×A mod B,其中 X为盒子的编号。

  • 第二种操作输入格式为"2 L R",表示查询编号为L到R的盒子里的石头总数。

输入输出格式

输入格式:

第一行有两个数字n(1≤N≤109),q(1≤Q≤50000)。

接下来 q行表示询问操作。

输出格式:

对于每个第二种操作,输出石头总数。

输入输出样例

输入样例#1:

6 3
2 1 6
1 1 5 1 2
2 1 6
输出样例#1:

0
3
输入样例#2:

4 5
1 1 4 3 4
2 1 1
2 2 2
2 3 3
2 4 4
2 5 5
输出样例#2:

3
2
1
0
输入样例#3:

4 4
1 1 4 7 9
2 1 4
1 1 4 1 1
2 1 4
输出样例#3:

16
0

说明

Solution:

  本题黑的不行啊,两天就荒(废)在这题上了!

  思路:数学大套路+线段树。

  题目中唯一出现的数学式子:$\sum_\limits{i=1}^{i\leq n} {(i*A\mod B)}$,那么切入点当然是如何快速求该式子咯。

  我们对式子变形:原式$=A*\sum_\limits{i=1}^{i\leq n}{i}-B*\sum_\limits{i=1}^{i\leq n}{\lfloor \frac{i*A}{B} \rfloor}$。

  被减数式子很好算直接忽略,减数式子的解决关键是式子$\sum_\limits{i=1}^{i\leq n}{\lfloor \frac{i*A}{B} \rfloor}$,对此式子我们分情况讨论($A==B$的情况该式子直接算,所以忽略咯):

    1、$A>B$,我们假设$A=kB+r$,则原式子化为$\sum_\limits{i=1}^{i\leq n}{\lfloor \frac{i*(kB+r)}{B} \rfloor}=k*\sum_\limits{i=1}^{i\leq n}{i}+\sum_\limits{i=1}^{i\leq n}{\lfloor \frac{i*r}{B} \rfloor}$,我们把$r$当作新的$A$,那么就将该式子转化为了$A<B$的情况,于是关键就成了$A<B$时如何快速求原式子。

    2、$A<B$,我们将其抽象到平面直角坐标系上,不难发现$\sum_\limits{i=1}^{i\leq n}{\lfloor \frac{i*A}{B} \rfloor}$实际求的是坐标为$(0,0),(n,0),(n,\frac{n*A}{B})$三点围成的三角形的不在$X$轴上的格点个数,可能有点难以理解,我们画图理解(留图待画、手绘勿喷):

如图,对角线上每个被标记的点到x轴的垂线段上的格点(除开x轴的格点),所对应的就是每个$\lfloor \frac{i*A}{B} \rfloor$。我们若直接算下三角的格点个数会很麻烦,但是很容易算出整个矩形的格点个数,我们设$m=\lfloor \frac{n*A}{B} \rfloor$,则矩形的格点个数为$n*m$,我们用矩形的格点个数-上三角的格点个数+对角线上的格点个数,就能得到原式子的值。如何求上三角的格点个数和对角线的格点个数呢?我们把上三角逆时针旋转90度,就能得到一个类似于下三角的一条边为整数的三角形,用同样的方法去求,发现上三角的格点个数恰好等于$\sum_\limits{i=1}^{i\leq m}{\lfloor \frac{i*B}{A} \rfloor}$,因为$A<B$,我们又回到了第1种$A>B$情况,于是可以递归去求(递归边界就是$A|B$返回0)。而对角线斜率为$\frac{\frac{A}{gcd(A,B)}}{\frac{B}{gcd(A,B)}}$,那么横坐标每隔$\frac{B}{gcd(A,B)}$个单位会有一个格点出现,所以对角线上共有$\frac{n*gcd(A,B)}{B}$个格点。不难发现整个递归过程就是个类欧几里得的求法,时间复杂度为$O(\log n)$

  有了上面的结论,我们就能在$O(\log n)$的复杂度下修改一段区间,那么对于原题的区间查询,我们使用懒惰标记,记录每段被修改的$A,B$和前一个点位置$st$,然后任意一度区间$[l,r]$的和都可以用$sum[r]-sum[l-1]$去算,而每个$sum[i]$直接调用上面的递归过程就好了。

  细节太多,注意:区间肯定得离散,而求区间和时用到了前缀和的思想,一个简单的离散方法是对询问的$l,r$,将$l-1,r$离散,然后线段树建树时每个节点维护的是一整段区间,要把每段小的区间都表示出来(开始30分的原因)。

  最后总时间复杂度$O(q\log^2 n)$,稳妥!(>.^_^.<咕咕)

  

代码:

/*Code by 520 -- 9.7*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);++(i))
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);--(i))
#define lson l,m,rt<<1
#define rson m,r,rt<<1|1
using namespace std;
const int N=;
int n,m,flag[N],L[N],R[N],*Q[N],cnt,tot,val[N];
ll A[N],B[N];
struct node{
ll sum,a,b,st,len;
}t[N]; int gi(){
int a=;char x=getchar();
while(x<''||x>'')x=getchar();
while(x>=''&&x<='')a=(a<<)+(a<<)+(x^),x=getchar();
return a;
} il bool cmp(int *a,int *b){return *a<*b;} ll gcd(ll a,ll b){return b?gcd(b,a%b):a;} ll calc(ll a,ll b,ll n){
ll x=a/b;a%=b;
ll sum=n*(n+)/*x;
if(!a||!b) return sum;
ll lala=n/b,m=a*n/b;
return sum+n*m-calc(b,a,m)+lala;
} il ll solve(ll a,ll b,ll n){
if(n<)return ;
ll g=gcd(a,b);
return n*(n+)/*a-b*calc(a/g,b/g,n);
} il void pushup(int rt){t[rt].sum=t[rt<<].sum+t[rt<<|].sum;} il void gai(ll A,ll B,ll st,int rt){
t[rt].a=A,t[rt].b=B,t[rt].st=st;
t[rt].sum=solve(A,B,st+t[rt].len-)-solve(A,B,st-);
} il void pushdown(int rt){
if(t[rt].b){
gai(t[rt].a,t[rt].b,t[rt].st,rt<<);
gai(t[rt].a,t[rt].b,t[rt].st+t[rt<<].len,rt<<|);
t[rt].b=;
}
} void build(int l,int r,int rt){
if(l+==r){t[rt]=node{,,,,val[r]-val[l]};return;}
int m=l+r>>;
t[rt]=node{,,,,val[r]-val[l]};
build(lson),build(rson);
} void update(ll A,ll B,int L,int R,int l,int r,int rt){
if(R<=l||r<=L)return;
if(L<=l&&R>=r){gai(A,B,val[l]-val[L]+,rt);return;}
pushdown(rt);
int m=l+r>>;
if(L<=m) update(A,B,L,R,lson);
if(R>=m) update(A,B,L,R,rson);
pushup(rt);
} ll query(int L,int R,int l,int r,int rt){
if(R<=l||r<=L)return ;
if(L<=l&&R>=r)return t[rt].sum;
pushdown(rt);
int m=l+r>>;
ll ret=;
if(L<=m) ret+=query(L,R,lson);
if(R>=m) ret+=query(L,R,rson);
return ret;
} int main(){
n=gi(),m=gi();
For(i,,m) {
flag[i]=gi(),L[i]=gi()-,R[i]=gi(),Q[++tot]=&L[i],Q[++tot]=&R[i];
if(flag[i]==) A[i]=gi(),B[i]=gi();
}
sort(Q+,Q+tot+,cmp);
int lst=-;
For(i,,tot) if(*Q[i]!=lst) lst=*Q[i],*Q[i]=++cnt,val[cnt]=lst;else *Q[i]=cnt;
build(,cnt,);
For(i,,m)
if(flag[i]==) update(A[i],B[i],L[i],R[i],,cnt,);
else printf("%lld\n",query(L[i],R[i],,cnt,));
return ;
}

P4433 [COCI2009-2010#1] ALADIN的更多相关文章

  1. BZOJ 3090: Coci2009 [podjela]

    3090: Coci2009 [podjela] Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 23  Solved: 17[Submit][Statu ...

  2. 如何使用本地账户"完整"安装 SharePoint Server 2010+解决“New-SPConfigurationDatabase : 无法连接到 SharePoint_Config 的 SQL Server 的数据 库 master。此数据库可能不存在,或当前用户没有连接权限。”

    注:目前看到的解决本地账户完整安装SharePoint Server 2010的解决方案如下,但是,有但是的哦: 当我们选择了"完整"模式安装SharePointServer201 ...

  3. How to accept Track changes in Microsoft Word 2010?

    "Track changes" is wonderful and remarkable tool of Microsoft Word 2010. The feature allow ...

  4. [入门级] 基于 visual studio 2010 mvc4 的图书管理系统开发初步 (二)

    [入门级] 基于 visual studio 2010 mvc4 的图书管理系统开发初步 (二) Date  周六 10 一月 2015 By 钟谢伟 Category website develop ...

  5. [入门级] visual studio 2010 mvc4开发,用ibatis作为数据库访问媒介(一)

    [入门级] visual studio 2010 mvc4开发,用ibatis作为数据库访问媒介(一) Date  周二 06 一月 2015 By 钟谢伟 Tags mvc4 / asp.net 示 ...

  6. c++ builder 2010 错误 F1004 Internal compiler error at 0x9740d99 with base 0x9

    今天遇到一个奇怪的问题,拷贝项目后,在修改,会出现F1004 Internal compiler error at 0x9740d99 with base 0x9 ,不管怎么改,删除改动,都没用,关闭 ...

  7. Sharepoint 2010、Sharepoint 2013浏览器打开CAD(.dwg)

    客户端配置 1.安装FreeDWGViewer.exe,设置浏览器查看 2.检查ActiveX插件是否已安装成功 服务端配置 1.开启许可模式或者通过脚本将"application/acad ...

  8. Microsoft Windows* SDK May 2010 或较新版本(兼容 2010 年 6 月 DirectX SDK)GPU Detect

    原文链接 下载代码样本 特性/描述 日期: 2016 年 5 月 5 日 GPU Detect 是一种简短的示例,演示了检测系统中主要显卡硬件(包括第六代智能英特尔® 酷睿™ 处理器产品家族)的方式. ...

  9. delphi 2010与delphi XE破解版的冲突

    在系统中同时安装了Dephi 2010LITE版与Delphi XE lite后,总是会有一个有问题 是因为两者都是读取C:\ProgramData\Embarcadero目录下的license文件, ...

随机推荐

  1. 基于Cocos2d-x-1.0.1的飞机大战游戏迁移到Cocos2d-x-3.0版本,并移植到Android平台成功运行

    一.版本迁移中的问题 1.游戏元素Sprite.Label.Action等等的创建函数名都改为create. 2.函数的回调callfunc_selectorcallfuncN_selectorcal ...

  2. MongoDB中设置expire过期自动删除

    关键词: expireAfterSeconds.TTL TTL Time to Live 类似Redis中的expire机制,MongoDB也可以设置过期自动删除的表. MongoDB的过期设置依赖索 ...

  3. JAVA使用qrcode生成二维码(带logo/不带logo)

    /** * */ package qrcode; import java.awt.Color; import java.awt.Graphics2D; import java.awt.Image; i ...

  4. 【日常训练】 Help Greg the Dwarf(CodeForces-99E)

    题意与分析 题意是这样的,问你把一个长方形从一个L型街道的一端移动到另一端,固定了该长方形的长,求他的最大宽. 这种问题我是第一次独立解决(以前都是抱队友大腿QAQ),现在没法子只好自己硬着头皮做,看 ...

  5. WordPress函数wp_page_menu详解

    说明 该标签显示带有链接的WordPress页面列表,并且可以选择将 Home(主页)自动显示为列表中的一员.该标签是自定义侧边栏和标题栏的好帮手,同时还可以用在其它模板中. WordPress教程 ...

  6. VMware Workstation and Device/Credential Guard are not compatible

    VMware Workstation and Device/Credential Guard are not compatible. VMware Workstation can be run aft ...

  7. linux shell 完成批量压缩文件

    首先得到文件列表 使用 list -1 注意是1 不是l 然后是用一个循环内包装zip代码 #!/bin/bash list=`` for var in $list do echo $var zip ...

  8. mysql 数据库备份和恢复

    物理备份对比逻辑备份 物理备份是指直接复制包含数据的文件夹和文件.这种类型的备份适用于大数据量且非常重要,遇到问题需要快速回复的数据库. 逻辑备份保存能够代表数据库信息的逻辑结构(CREATE DAT ...

  9. WebRTC入门

    什么是WebRTC? 众所周知,浏览器本身不支持相互之间直接建立信道进行通信,都是通过服务器进行中转.比如现在有两个客户端,甲和乙,他们俩想要通信,首先需要甲和服务器.乙和服务器之间建立信道.甲给乙发 ...

  10. 基于KVM的H3C云计算平台CAS运维经验