简介

图片验证码识别的可以分为几个步骤,一般用 Pillow 库或 OpenCV 来实现,这几个过程是:

  • 1.灰度处理&二值化
  • 2.降噪
  • 3.字符分割
  • 4.标准化
  • 5.识别

所谓降噪就是把不需要的信息通通去除,比如背景,干扰线,干扰像素等等,只留下需要识别的字符,让图片变成2进制点阵,方便代入模型训练。

8邻域降噪

8邻域降噪 的前提是将图片灰度化,即将彩色图像转化为灰度图像。以RGN色彩空间为例,彩色图像中每个像素的颜色由R 、G、B三个分量决定,每个分量由0到255种取值,这个一个像素点可以有一千多万种颜色变化。而灰度则是将三个分量转化成一个,使每个像素点只有0-255种取值,这样可以使后续的图像计算量变得少一些。

以上面的灰度图片为例,图片越接近白色的点像素越接近255,越接近黑色的点像素越接近0,而且验证码字符肯定是非白色的。对于其中噪点大部分都是孤立的小点的,而且字符都是串联在一起的。8邻域降噪 的原理就是依次遍历图中所有非白色的点,计算其周围8个点中属于非白色点的个数,如果数量小于一个固定值,那么这个点就是噪点。对于不同类型的验证码这个阈值是不同的,所以可以在程序中配置,不断尝试找到最佳的阈值。

经过测试8邻域降噪 对于小的噪点的去除是很有效的,而且计算量不大,下图是阈值设置为4去噪后的结果:

Pillow实现

下面是使用 Pillow 模块的实现代码:

from PIL import Image

def noise_remove_pil(image_name, k):
"""
8邻域降噪
Args:
image_name: 图片文件命名
k: 判断阈值 Returns: """ def calculate_noise_count(img_obj, w, h):
"""
计算邻域非白色的个数
Args:
img_obj: img obj
w: width
h: height
Returns:
count (int)
"""
count = 0
width, height = img_obj.size
for _w_ in [w - 1, w, w + 1]:
for _h_ in [h - 1, h, h + 1]:
if _w_ > width - 1:
continue
if _h_ > height - 1:
continue
if _w_ == w and _h_ == h:
continue
if img_obj.getpixel((_w_, _h_)) < 230: # 这里因为是灰度图像,设置小于230为非白色
count += 1
return count img = Image.open(image_name)
# 灰度
gray_img = img.convert('L') w, h = gray_img.size
for _w in range(w):
for _h in range(h):
if _w == 0 or _h == 0:
gray_img.putpixel((_w, _h), 255)
continue
# 计算邻域非白色的个数
pixel = gray_img.getpixel((_w, _h))
if pixel == 255:
continue if calculate_noise_count(gray_img, _w, _h) < k:
gray_img.putpixel((_w, _h), 255)
return gray_img if __name__ == '__main__':
image = noise_remove_pil("test.jpg", 4)
image.show()

OpenCV实现

使用OpenCV可以提高计算效率:

import cv2

def noise_remove_cv2(image_name, k):
"""
8邻域降噪
Args:
image_name: 图片文件命名
k: 判断阈值 Returns: """ def calculate_noise_count(img_obj, w, h):
"""
计算邻域非白色的个数
Args:
img_obj: img obj
w: width
h: height
Returns:
count (int)
"""
count = 0
width, height = img_obj.shape
for _w_ in [w - 1, w, w + 1]:
for _h_ in [h - 1, h, h + 1]:
if _w_ > width - 1:
continue
if _h_ > height - 1:
continue
if _w_ == w and _h_ == h:
continue
if img_obj[_w_, _h_] < 230: # 二值化的图片设置为255
count += 1
return count img = cv2.imread(image_name, 1)
# 灰度
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
w, h = gray_img.shape
for _w in range(w):
for _h in range(h):
if _w == 0 or _h == 0:
gray_img[_w, _h] = 255
continue
# 计算邻域pixel值小于255的个数
pixel = gray_img[_w, _h]
if pixel == 255:
continue if calculate_noise_count(gray_img, _w, _h) < k:
gray_img[_w, _h] = 255 return gray_img if __name__ == '__main__':
image = noise_remove_cv2("test.jpg", 4)
cv2.imshow('img', image)
cv2.waitKey(10000)

Python图片验证码降噪 — 8邻域降噪的更多相关文章

  1. python图片验证码识别最新模块muggle_ocr

    一.官方文档 https://pypi.org/project/muggle-ocr/ 二模块安装 pip install muggle-ocr # 因模块过新,阿里/清华等第三方源可能尚未更新镜像, ...

  2. opencv4 java 验证码噪点 8邻域降噪

    工程下载地址https://download.csdn.net/download/qq_16596909/11503962 程序运行后,同样会把图片存放在以下路径 首先来看一下原图 二值化后,可以把这 ...

  3. 【python】带图片验证码的登录自动化实战

    近期在跟进新项目的时候,整体的业务线非常之长,会一直重复登录退出不同账号的这个流程,所以想从登录开始实现部分的自动化.因为是B/S的架构,所以采用的是selenium的框架来实现.大致实现步骤如下: ...

  4. 字符型图片验证码识别完整过程及Python实现

    字符型图片验证码识别完整过程及Python实现 1   摘要 验证码是目前互联网上非常常见也是非常重要的一个事物,充当着很多系统的 防火墙 功能,但是随时OCR技术的发展,验证码暴露出来的安全问题也越 ...

  5. 字符识别Python实现 图片验证码识别

    字符型图片验证码识别完整过程及Python实现 1   摘要 验证码是目前互联网上非常常见也是非常重要的一个事物,充当着很多系统的 防火墙 功能,但是随时OCR技术的发展,验证码暴露出来的安全问题也越 ...

  6. python随机图片验证码的生成

    Python生成随机验证码,需要使用PIL模块. 安装: 1 pip3 install pillow 基本使用 1. 创建图片 1 2 3 4 5 6 7 8 9 from PIL import Im ...

  7. 纯代码系列:Python实现验证码图片(PIL库经典用法用法,爬虫12306思路)

    现在的网页中,为了防止机器人提交表单,图片验证码是很常见的应对手段之一.这里就不详细介绍了,相信大家都遇到过. 现在就给出用Python的PIL库实现验证码图片的代码.代码中有详细注释. #!/usr ...

  8. Python开发【Django】:图片验证码、KindEditor

    图片验证码 生成图片验证码需要以下: session check_code.py(依赖:Pillow,字体文件) 模块安装 pip install Pillow src属性后面加? 在utils下拷贝 ...

  9. Python 实现简单图片验证码登录

    朋友说公司要在测试环境做接口测试,登录时需要传入正确的图片的验证码,本着懒省事的原则,推荐他把测试环境的图片验证码写死,我们公司也是这么做的^_^.劝说无果/(ㄒoㄒ)/~~,只能通过 OCR 技术来 ...

随机推荐

  1. POJ1430

    这个题目初看上去是一个排列组合题,而实际上……也是一个排列组合题. 题目描述是: Description The Stirling number of the second kind S(n, m) ...

  2. 【uoj#315/bzoj4943】[NOI2017]蚯蚓排队 Hash

    题目描述 给出 $n$ 个字符,初始每个字符单独成字符串.支持 $m$ 次操作,每次为一下三种之一: $1\ i\ j$ :将以 $i$ 结尾的串和以 $j$ 开头的串连到一起. $2\ i$ :将 ...

  3. 【uoj#209】[UER #6]票数统计 组合数+乱搞

    题目描述 一个长度为 $n$ 的序列,每个位置为 $0$ 或 $1$ 两种.现在给出 $m$ 个限制条件,第 $i$ 个限制条件给出 $x_i$ .$y_i$ ,要求至少满足以下两个条件之一: 序列的 ...

  4. div内元素的居中

    1.如果是一行文字(不超过一行) parent{ text-align:center; line-height:div高度; } 2.如果是div内其他类型元素 parent{ height:xxxp ...

  5. P3850 [TJOI2007]书架

    题目描述 Knuth先生家里有个精致的书架,书架上有N本书,如今他想学到更多的知识,于是又买来了M本不同的新书.现在他要把新买的书依次插入到书架中,他已经把每本书要插入的位置标记好了,并且相应的将它们 ...

  6. P2303 [SDOi2012]Longge的问题

    题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). 输入输出格式 输入格式: 一 ...

  7. P4645 [COCI2006-2007 Contest#3] BICIKLI

    题意翻译 给定一个有向图,n个点,m条边.请问,1号点到2号点有多少条路径?如果有无限多条,输出inf,如果有限,输出答案模10^9的余数. 两点之间可能有重边,需要看成是不同的路径. 题目描述 A ...

  8. Climbing Stairs - LeetCode

    目录 题目链接 注意点 解法 小结 题目链接 Climbing Stairs - LeetCode 注意点 注意边界条件 解法 解法一:这道题是一题非常经典的DP题(拥有非常明显的重叠子结构).爬到n ...

  9. hdu 5852 :Intersection is not allowed! 行列式

    有K个棋子在一个大小为N×N的棋盘.一开始,它们都在棋盘的顶端,它们起始的位置是 (1,a1),(1,a2),...,(1,ak) ,它们的目的地是 (n,b1),(n,b2),...,(n,bk). ...

  10. D. Huge Strings Codeforces Round #438 by Sberbank and Barcelona Bootcamp (Div. 1 + Div. 2 combined)

    http://codeforces.com/contest/868/problem/D 优化:两个串合并 原有状态+ 第一个串的尾部&第二个串的头部的状态 串变为第一个串的头部&第二个 ...