【洛谷】P1445 没占到1444的愤怒
继续洛谷刷水日常,突然遇到一道不是很水的题目……
https://www.luogu.org/problem/show?pid=1445
题意:给定n(1<=n<=1000000),求方程1/x+1/y=1/n!的正整数解的个数。
思考了5min后,就去看题解了……
Qrc:这也太弱了……
【思路】
原方程可变形为:
xy/(x+y)=n!
xy-(x+y)n!=0,配方后,得:
(x-n!)(y-n!)=(n!)^2
所以求出(n!)^2的因数个数即可,又由于因数定理(正整数的因数个数等于其所有质因数幂次+1的乘积),只要求出其质因数及幂次即可
又:(n!)^2的每个质因数的幂次都是n!的质因数的2倍
同理,n!的质因数幂次是1~n每个数质因数幂次的“和”
所以对1~n中所有数求出质因数及幂次即可
先筛出1~n中所有的质数
再对每一个质数判断,1~n中,它作为质因数出现了几次?
下面贴上代码:
1 #include<cstdio>
2 const int M=1e9+7;
3 int n,primes[5000001],num=0,Ans=1;
4 bool isntprime[10000001]={1,1};
5 void prime1(){//线性筛法
6 for(int i=2;i<=n;++i){
7 if(!isntprime[i])primes[++num]=i;
8 for(int j=1;j<=num&&i*primes[j]<=n;++j){
9 isntprime[i*primes[j]]=1;
10 if(!(i%primes[j]))break;
11 }
12 }
13 }
14 int main(){
15 scanf("%d",&n);
16 prime1();
17 for(int i=1;i<=num;++i){
18 int prime=primes[i],c=0;
19 for(long long j=prime;j<=n;j*=prime)
20 c+=n/j;//必须对prime的若干次幂都进行一遍,这样不会漏掉包含其多次幂的数
21 Ans=1ll*Ans*(c*2+1)%M;
22 }
23 printf("%d",Ans);
24 return 0;
25 }
【洛谷】P1445 没占到1444的愤怒的更多相关文章
- 洛谷P1445 [Violet] 樱花 (数学)
洛谷P1445 [Violet] 樱花 题目背景 我很愤怒 题目描述 求方程 1/X+1/Y=1/(N!) 的正整数解的组数,其中N≤10^6. 解的组数,应模1e9+7. 输入输出格式 输入格式: ...
- 【题解】洛谷P1445 [Violet]樱花 (推导+约数和)
洛谷P1445:https://www.luogu.org/problemnew/show/P1445 推导过程 1/x+1/y=1/n! 设y=n!+k(k∈N∗) 1/x+1/(n!+k)=1 ...
- 洛谷P1445 樱花
题意:求 1/x + 1/y = 1/(n!)的正整数解个数. 解:神仙...... 设(n!) = t 打表发现 x ∈ [t+1 , 2t] 反正就是拿到式子以后乱搞一通然后发现得到了这个很美观的 ...
- 【洛谷 P1445】 [Violet]樱花(唯一分解定理)
做了题还是忍不住要写一发题解,感觉楼下的不易懂啊. 本题解使用latex纯手写精心打造. 题意:求\(\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}\)的正整数解总数. 首先 ...
- 洛谷 P1445 [Violet]樱花
#include<cstdio> #include<algorithm> #include<cstring> #include<vector> usin ...
- 洛谷P1198 [JSOI2008]最大数
P1198 [JSOI2008]最大数 267通过 1.2K提交 题目提供者该用户不存在 标签线段树各省省选 难度提高+/省选- 提交该题 讨论 题解 记录 最新讨论 WA80的戳这QwQ BZOJ都 ...
- [洛谷P1198/BZOJ1012][JSOI2008] 最大数 - 树状数组/线段树?
其实已经学了树状数组和线段树,然而懒得做题,所以至今没写多少博客 Description 现在请求你维护一个数列,要求提供以下两种操作: 1. 查询操作. 语法:Q L 功能:查询当前数列中末尾L个数 ...
- 洛谷 P1039侦探推理
/* 枚举罪犯和星期几,那么所有人说的话是真是假一目了然. 首先一个人不能既说真话又说假话. 即: I am guilty. I am not guilty. 因为非真即假,所以直接判断impossi ...
- 洛谷 P1640 [SCOI2010]连续攻击问题
洛谷 一句话题意: 每个武器有两种属性,每种武器只能选择一种属性,从属性1连续递增才算攻击,求最大连续攻击次数. 因为同学告诉我这是二分图最大匹配,自然就往那个方向去想. 那么怎么建图呢? 每个武器只 ...
随机推荐
- java的4种引用 强软弱虚
&lt;img src="https://pic4.zhimg.com/d643d9ab5c933ac475cfa23063bed137_b.png" data-r ...
- matplotlib删除地图投影上的等值线及风场
[前言]最近在编写一个气象应用程序,用来显示某一时刻某一地区的气温等值线和风场,程序主要用到了第三方库matplotlib及Basemap.在编写的过程中发现,如果不进行擦除操作直接绘制新的等值线或风 ...
- SpringBoot项目部署进阶
一.war包部署 通过“云开发”平台初始化的SpringBoot项目默认采用jar形式打包,这也是我们推荐的方式.但是,因为某些原因,软件需求方特别要求用war形式打包,我们该怎么做? 1.项目尚未开 ...
- 关于SDWebImage加载高清图片导致app崩溃的问题
链接是对于SDWebImage的使用方法 http://www.cnblogs.com/JimmyBright/p/4457258.html 使用SDWebImage加载高清图片的时候,往往会报内存溢 ...
- kafka-connect-hive Sink插件入门指南
kafka-connect-hive是基于kafka-connect平台实现的hive数据读取和写入插件,主要由source.sink两部分组成,source部分完成hive表数据的读取任务,kafk ...
- [BZOJ1500][NOI2005]维修数列 解题报告 Splay
Portal Gun:[BZOJ1500][NOI2005]维修数列 有一段时间没写博客了,最近在刚数据结构......各种板子背得简直要起飞,题目也是一大堆做不完,这里就挑一道平衡树的题来写写好了 ...
- 【BZOJ3622】已经没有什么好害怕的了(动态规划,容斥)
[BZOJ3622]已经没有什么好害怕的了(动态规划,容斥) 题面 BZOJ 题解 很明显的,这类问题是要从至少变成恰好的过程,直接容斥即可. 首先我们要求的是(糖果>药片)=(药片>糖果 ...
- vim 折叠的用法
http://www.cnblogs.com/fakis/archive/2011/04/14/2016213.html 1. 折叠方式 可用选项来设定折叠方式: 可在Vim 配置文件中设置 set ...
- bzoj 3928: [Cerc2014] Outer space invaders
$f[i][j]$表示消灭起始时间在$(i,j)$内的外星人所花费的最小代价. 考虑在这个区间内距离最远的外星人h,在他的区间中一定要选一个点要开一炮,而且这一炮可以顺便把其他跨过这个点的敌人消灭,剩 ...
- loj6070【山东集训第一轮Day4】基因
题解: 分块对每个块的起点$st[i]$到$n$做一次回文自动机; 由于子串的回文自动机是原串的子图,所以并不需要重新构图,在原来的图上做即可: 做的时候记录某个终点的本质不同的回文串和$sum[i] ...