Gaussian Models
Warming Up
Before we talk about multivariate Gaussian, let's first review univariate Gaussian, which is usually called "Normal Distribution":
\[
X \sim N(\mu,\ \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{ -\frac{(x-\mu)^2}{2\sigma^2}}
\]
where \(\mu=\mathbb{E}(X)\), \(\sigma = \mathrm{var}(X)\).
Now, if we have bivariate form of \(X = [x_1\ x_2]\), and also assume \(x_1\) and \(x_2\) are statistically independent, then we can get the joint distribution:
\[
\begin{align*}\notag
\mathrm{P}(x_1,x_2) &= \mathrm{P}(x_1)\mathrm{P}(x_2) \\
&=\frac{1}{\sqrt{2\pi}\sigma} e^{ -\frac{(x_1-\mu_1)^2}{2\sigma^2}} \frac{1}{\sqrt{2\pi}\sigma} e^{ -\frac{(x_2-\mu_2)^2}{2\sigma^2}} \\
&= \frac{1}{\left( \sqrt{2\pi} \sigma \right)^2} \exp \left\{ -\frac{(x_1-\mu_1)^2}{2\sigma^2} - \frac{(x_2-\mu_2)^2}{2\sigma^2} \right\} \\
&=\frac{1}{\left( \sqrt{2\pi} \sigma \right)^2} \exp \left\{ -\frac{1}{2} \left[ (x_1-\mu_1) \sigma^{-2} (x_1-\mu_1) + (x_2-\mu_2) \sigma^{-2} (x_2-\mu_2) \right] \right\}
\end{align*}
\]
Rewrite formula into matrix form:
\[
\frac{1}{\left( \sqrt{2\pi} \sigma \right)^2} \exp \left\{ -\frac{1}{2} \begin{bmatrix} (x_1-\mu_1)^\mathtt{T} \sigma^{-2} & (x_2-\mu_2)^\mathtt{T} \sigma^{-2} \end{bmatrix}
\begin{bmatrix}
(x_1-\mu_1) \\ (x_2-\mu_2)
\end{bmatrix} \right\} \\
= \frac{1}{\left( \sqrt{2\pi} \sigma \right)^2} \exp \left\{ -\frac{1}{2}
\begin{bmatrix} (x_1-\mu_1)^\mathtt{T} & (x_2-\mu_2)^\mathtt{T} \end{bmatrix}
\begin{bmatrix} \sigma^{-2} & 0 \\ 0 & \sigma^{-2} \end{bmatrix}
\begin{bmatrix} (x_1-\mu_1) \\ (x_2-\mu_2) \end{bmatrix}
\right\}
\]
Let \(\begin{bmatrix}\sigma^{-2} & 0 \\ 0 & \sigma^{-2}\end{bmatrix} = \Sigma^{-1},\mathbf{x}=\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \mathbf{\mu}= \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}\), then we also get \(\Sigma = \begin{bmatrix} \sigma^2 & 0 \\ 0 & \sigma^2 \end{bmatrix}\) and \(\det(\Sigma)=\sigma^4\). Plug \(\Sigma,\mathbf{x},\mathbf{\mu}\) in equation above and we obtain:
\[
\frac{1}{\left( \sqrt{2\pi} \right)^2 \det (\Sigma)^{1/2} } \exp \left\{ -\frac{1}{2}
(\mathbf{x-\mu})^\mathtt{T} \Sigma^{-1} (\mathbf{x-\mu}) \right\}
\]
This is exactly the probability density distribution (PDF) of bivariate Gaussian distribution.
Multivariate Gaussian Distribution
In general, the PDF of multivariate Gaussian distribution (a.k.a. multivariate normal distribution, MVN) is as below:
\[
\frac{1}{\left( \sqrt{2\pi} \right)^d \det (\Sigma)^{1/2} } \exp \left\{ \frac{1}{2}
(\mathbf{x-\mu})^\mathtt{T} \Sigma^{-1} (\mathbf{x-\mu}) \right\}
\]
Written with StackEdit.
Gaussian Models的更多相关文章
- deep learning 的综述
从13年11月初开始接触DL,奈何boss忙or 各种问题,对DL理解没有CSDN大神 比如 zouxy09等 深刻,主要是自己觉得没啥进展,感觉荒废时日(丢脸啊,这么久....)开始开文,即为记录自 ...
- A Statistical View of Deep Learning (II): Auto-encoders and Free Energy
A Statistical View of Deep Learning (II): Auto-encoders and Free Energy With the success of discrimi ...
- Growing Pains for Deep Learning
Growing Pains for Deep Learning Advances in theory and computer hardware have allowed neural network ...
- 混合高斯模型(GMM)推导及实现
作者:桂. 时间:2017-03-20 06:20:54 链接:http://www.cnblogs.com/xingshansi/p/6584555.html 声明:欢迎被转载,不过记得注明出处哦 ...
- 混合拉普拉斯分布(LMM)推导及实现
作者:桂. 时间:2017-03-21 07:25:17 链接:http://www.cnblogs.com/xingshansi/p/6592599.html 声明:欢迎被转载,不过记得注明出处哦 ...
- 基于EM的多直线拟合
作者:桂. 时间:2017-03-22 06:13:50 链接:http://www.cnblogs.com/xingshansi/p/6597796.html 声明:欢迎被转载,不过记得注明出处哦 ...
- Reading lists for new LISA students(转)
Research in General How to write a great research paper Basics of machine learning http://www.iro.um ...
- 基于EM的多直线拟合实现及思考
作者:桂. 时间:2017-03-22 06:13:50 链接:http://www.cnblogs.com/xingshansi/p/6597796.html 声明:欢迎被转载,不过记得注明出处哦 ...
- ICLR 2014 International Conference on Learning Representations深度学习论文papers
ICLR 2014 International Conference on Learning Representations Apr 14 - 16, 2014, Banff, Canada Work ...
随机推荐
- Python - 格式化字符串的用法
0. 摘要 Python支持多种格式化字符串的方法,包括%-fromatting.str.format().f-strings三种,f-strings是Python3.6以后出现的一种新方法,相比其他 ...
- --provider=docker时出现的问题
Vagrantfile类似: Vagrant.configure(") do |config| config.vm.box = "hashicorp/precise64" ...
- Java泛型学习一
Java泛型 所谓泛型,就是变量类型的参数化.泛型是java1.5中引入的一个重要特征,通过引入泛型,可以使编译时类型安全,运行时更少抛出ClassCastException的可能.一提到参数化,最熟 ...
- the django travel three[form表单验证]
一:表单验证: 场景:因为浏览器的js可以被禁用,所以需要做后台的输入合法的验证. A:ajax发请求.需要注意的是ajax POST的数据的key值和form表单的里的字段名字一致,否则得不到验证! ...
- haproxy + lvs异同(优点-缺点)
LVS和HAProxy相比,它的异同是什么? 1. 两者都是如软件负载均衡.但lVS是基于linux操作系统实现的一种软负载均衡,Haproxy是根据第三 方应用实现的软负载均衡. 2. LVS是 ...
- 【C++0x】表达式之类型(decltype)
C++0x引入了新的关键字decltype,它是一个操作符,用来取得表达式的类型,主要在泛型编程中使用.这里,简单介绍一下语法规则. 语法形式:decltype (expression)其中,这里 ...
- Eclipse设置格式化每行字符的长度
Windows>>prefrence>>Java>>CodeStyle>>formatter>>edit>>line wrapp ...
- 用HTML编写阿里云
<!DOCTYPE html><html><head lang="en"> <meta charset="UTF-8" ...
- canvas 绘制双线技巧
楔子 最近一个项目,需要绘制双线的效果,双线效果表示的是轨道(类似铁轨之类的),如下图所示: 负责这块功能开发的小伙,姑且称之为L吧,最开始是通过数学计算的方式来实现这种双线,也就是在原来的路径的基础 ...
- PHP操作xml学习笔记之增删改查(1)—增加
xml文件 <?xml version="1.0" encoding="utf-8"?><班级> <学生> ...