Gaussian Models
Warming Up
Before we talk about multivariate Gaussian, let's first review univariate Gaussian, which is usually called "Normal Distribution":
\[
X \sim N(\mu,\ \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{ -\frac{(x-\mu)^2}{2\sigma^2}}
\]
where \(\mu=\mathbb{E}(X)\), \(\sigma = \mathrm{var}(X)\).
Now, if we have bivariate form of \(X = [x_1\ x_2]\), and also assume \(x_1\) and \(x_2\) are statistically independent, then we can get the joint distribution:
\[
\begin{align*}\notag
\mathrm{P}(x_1,x_2) &= \mathrm{P}(x_1)\mathrm{P}(x_2) \\
&=\frac{1}{\sqrt{2\pi}\sigma} e^{ -\frac{(x_1-\mu_1)^2}{2\sigma^2}} \frac{1}{\sqrt{2\pi}\sigma} e^{ -\frac{(x_2-\mu_2)^2}{2\sigma^2}} \\
&= \frac{1}{\left( \sqrt{2\pi} \sigma \right)^2} \exp \left\{ -\frac{(x_1-\mu_1)^2}{2\sigma^2} - \frac{(x_2-\mu_2)^2}{2\sigma^2} \right\} \\
&=\frac{1}{\left( \sqrt{2\pi} \sigma \right)^2} \exp \left\{ -\frac{1}{2} \left[ (x_1-\mu_1) \sigma^{-2} (x_1-\mu_1) + (x_2-\mu_2) \sigma^{-2} (x_2-\mu_2) \right] \right\}
\end{align*}
\]
Rewrite formula into matrix form:
\[
\frac{1}{\left( \sqrt{2\pi} \sigma \right)^2} \exp \left\{ -\frac{1}{2} \begin{bmatrix} (x_1-\mu_1)^\mathtt{T} \sigma^{-2} & (x_2-\mu_2)^\mathtt{T} \sigma^{-2} \end{bmatrix}
\begin{bmatrix}
(x_1-\mu_1) \\ (x_2-\mu_2)
\end{bmatrix} \right\} \\
= \frac{1}{\left( \sqrt{2\pi} \sigma \right)^2} \exp \left\{ -\frac{1}{2}
\begin{bmatrix} (x_1-\mu_1)^\mathtt{T} & (x_2-\mu_2)^\mathtt{T} \end{bmatrix}
\begin{bmatrix} \sigma^{-2} & 0 \\ 0 & \sigma^{-2} \end{bmatrix}
\begin{bmatrix} (x_1-\mu_1) \\ (x_2-\mu_2) \end{bmatrix}
\right\}
\]
Let \(\begin{bmatrix}\sigma^{-2} & 0 \\ 0 & \sigma^{-2}\end{bmatrix} = \Sigma^{-1},\mathbf{x}=\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \mathbf{\mu}= \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}\), then we also get \(\Sigma = \begin{bmatrix} \sigma^2 & 0 \\ 0 & \sigma^2 \end{bmatrix}\) and \(\det(\Sigma)=\sigma^4\). Plug \(\Sigma,\mathbf{x},\mathbf{\mu}\) in equation above and we obtain:
\[
\frac{1}{\left( \sqrt{2\pi} \right)^2 \det (\Sigma)^{1/2} } \exp \left\{ -\frac{1}{2}
(\mathbf{x-\mu})^\mathtt{T} \Sigma^{-1} (\mathbf{x-\mu}) \right\}
\]
This is exactly the probability density distribution (PDF) of bivariate Gaussian distribution.
Multivariate Gaussian Distribution
In general, the PDF of multivariate Gaussian distribution (a.k.a. multivariate normal distribution, MVN) is as below:
\[
\frac{1}{\left( \sqrt{2\pi} \right)^d \det (\Sigma)^{1/2} } \exp \left\{ \frac{1}{2}
(\mathbf{x-\mu})^\mathtt{T} \Sigma^{-1} (\mathbf{x-\mu}) \right\}
\]
Written with StackEdit.
Gaussian Models的更多相关文章
- deep learning 的综述
从13年11月初开始接触DL,奈何boss忙or 各种问题,对DL理解没有CSDN大神 比如 zouxy09等 深刻,主要是自己觉得没啥进展,感觉荒废时日(丢脸啊,这么久....)开始开文,即为记录自 ...
- A Statistical View of Deep Learning (II): Auto-encoders and Free Energy
A Statistical View of Deep Learning (II): Auto-encoders and Free Energy With the success of discrimi ...
- Growing Pains for Deep Learning
Growing Pains for Deep Learning Advances in theory and computer hardware have allowed neural network ...
- 混合高斯模型(GMM)推导及实现
作者:桂. 时间:2017-03-20 06:20:54 链接:http://www.cnblogs.com/xingshansi/p/6584555.html 声明:欢迎被转载,不过记得注明出处哦 ...
- 混合拉普拉斯分布(LMM)推导及实现
作者:桂. 时间:2017-03-21 07:25:17 链接:http://www.cnblogs.com/xingshansi/p/6592599.html 声明:欢迎被转载,不过记得注明出处哦 ...
- 基于EM的多直线拟合
作者:桂. 时间:2017-03-22 06:13:50 链接:http://www.cnblogs.com/xingshansi/p/6597796.html 声明:欢迎被转载,不过记得注明出处哦 ...
- Reading lists for new LISA students(转)
Research in General How to write a great research paper Basics of machine learning http://www.iro.um ...
- 基于EM的多直线拟合实现及思考
作者:桂. 时间:2017-03-22 06:13:50 链接:http://www.cnblogs.com/xingshansi/p/6597796.html 声明:欢迎被转载,不过记得注明出处哦 ...
- ICLR 2014 International Conference on Learning Representations深度学习论文papers
ICLR 2014 International Conference on Learning Representations Apr 14 - 16, 2014, Banff, Canada Work ...
随机推荐
- luogu【模板】三维偏序(陌上花开)
嘟嘟嘟 很显然我开始学\(CDQ\)分治了. 我刚开始学的时候看了一篇博客,上面全是一些抽象的概念,看完后真是一头雾水,最后还不得不抄了这题的代码. 但这样可不行呀-- 于是我就不打算再扣那篇博客,而 ...
- saltstack之混合匹配
需要-C参数: salt -C ## 使用grains属性来匹配 [root@hadoop0 pillar]# salt -C 'G@os:Ubuntu' test.ping uadoop1: Tru ...
- Linux下Meepops的搭建
1.下载跟版本相对应的扩展 http://br.php.net/downloads.php 2.进入到pcntl目录 cd php-5.4.45/ext/pcntl 3.先执行phpize /usr/ ...
- 469 B. Intercepted Message
http://codeforces.com/problemset/problem/950/B Hacker Zhorik wants to decipher two secret messages h ...
- nagios-4.0.8 安装部署
1.Nagios工作原理 Nagios周期性调用插件检测服务器状态,并维持一个队列,所有插件返回状态信息都进入队列,Nagios每次从队首开始读取信息,并把状态通过web显示. 安装完成后,在nagi ...
- [教程] 【【【【odex教程之jar】】】】/system/framework里面的jar做odex g13
dexopt-wrapper core.jar core.odex dexopt-wrapper ext.jar ext.odex dexopt-wrapper framework.jar frame ...
- sublime 一些常用功能和快捷键
Ctrl+D 选词 (反复按快捷键,即可继续向下同时选中下一个相同的文本进行同时编辑)Ctrl+G 跳转到相应的行Ctrl+J 合并行(已选择需要合并的多行时)Ctrl+L 选择整行(按住-继续选择下 ...
- css学习之LInk & import
一.用link加载外部样式表 1.放置位置:放在head元素中 2.样式表中只能包含样式规则,不能包含其他标记语言.如出现了标记,会导致其中一部分或全部被忽略. 3.type = 'text/css' ...
- 在jupyter中安装R的kernal
网上有安装完anaconda后可以直接使用conda 命令安装R的kernal,本人电脑上已经安装了anaconda和R,因此使用手动安装的方式安装. 安装环境: windows 8.1 企业版 An ...
- 使用源安装java JDK
使用下面的命令安装,只需一些时间,它就会下载许多的文件,所及你要确保你的网络环境良好: sudo add-apt-repository ppa:webupd8team/java sudo apt-ge ...