Warming Up

Before we talk about multivariate Gaussian, let's first review univariate Gaussian, which is usually called "Normal Distribution":
\[
X \sim N(\mu,\ \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{ -\frac{(x-\mu)^2}{2\sigma^2}}
\]
where \(\mu=\mathbb{E}(X)\), \(\sigma = \mathrm{var}(X)\).

Now, if we have bivariate form of \(X = [x_1\ x_2]\), and also assume \(x_1\) and \(x_2\) are statistically independent, then we can get the joint distribution:
\[
\begin{align*}\notag
\mathrm{P}(x_1,x_2) &= \mathrm{P}(x_1)\mathrm{P}(x_2) \\
&=\frac{1}{\sqrt{2\pi}\sigma} e^{ -\frac{(x_1-\mu_1)^2}{2\sigma^2}} \frac{1}{\sqrt{2\pi}\sigma} e^{ -\frac{(x_2-\mu_2)^2}{2\sigma^2}} \\
&= \frac{1}{\left( \sqrt{2\pi} \sigma \right)^2} \exp \left\{ -\frac{(x_1-\mu_1)^2}{2\sigma^2} - \frac{(x_2-\mu_2)^2}{2\sigma^2} \right\} \\
&=\frac{1}{\left( \sqrt{2\pi} \sigma \right)^2} \exp \left\{ -\frac{1}{2} \left[ (x_1-\mu_1) \sigma^{-2} (x_1-\mu_1) + (x_2-\mu_2) \sigma^{-2} (x_2-\mu_2) \right] \right\}
\end{align*}
\]

Rewrite formula into matrix form:
\[
\frac{1}{\left( \sqrt{2\pi} \sigma \right)^2} \exp \left\{ -\frac{1}{2} \begin{bmatrix} (x_1-\mu_1)^\mathtt{T} \sigma^{-2} & (x_2-\mu_2)^\mathtt{T} \sigma^{-2} \end{bmatrix}
\begin{bmatrix}
(x_1-\mu_1) \\ (x_2-\mu_2)
\end{bmatrix} \right\} \\
= \frac{1}{\left( \sqrt{2\pi} \sigma \right)^2} \exp \left\{ -\frac{1}{2}
\begin{bmatrix} (x_1-\mu_1)^\mathtt{T} & (x_2-\mu_2)^\mathtt{T} \end{bmatrix}
\begin{bmatrix} \sigma^{-2} & 0 \\ 0 & \sigma^{-2} \end{bmatrix}
\begin{bmatrix} (x_1-\mu_1) \\ (x_2-\mu_2) \end{bmatrix}
\right\}
\]

Let \(\begin{bmatrix}\sigma^{-2} & 0 \\ 0 & \sigma^{-2}\end{bmatrix} = \Sigma^{-1},\mathbf{x}=\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \mathbf{\mu}= \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}\), then we also get \(\Sigma = \begin{bmatrix} \sigma^2 & 0 \\ 0 & \sigma^2 \end{bmatrix}\) and \(\det(\Sigma)=\sigma^4\). Plug \(\Sigma,\mathbf{x},\mathbf{\mu}\) in equation above and we obtain:
\[
\frac{1}{\left( \sqrt{2\pi} \right)^2 \det (\Sigma)^{1/2} } \exp \left\{ -\frac{1}{2}
(\mathbf{x-\mu})^\mathtt{T} \Sigma^{-1} (\mathbf{x-\mu}) \right\}
\]
This is exactly the probability density distribution (PDF) of bivariate Gaussian distribution.

Multivariate Gaussian Distribution

In general, the PDF of multivariate Gaussian distribution (a.k.a. multivariate normal distribution, MVN) is as below:
\[
\frac{1}{\left( \sqrt{2\pi} \right)^d \det (\Sigma)^{1/2} } \exp \left\{ \frac{1}{2}
(\mathbf{x-\mu})^\mathtt{T} \Sigma^{-1} (\mathbf{x-\mu}) \right\}
\]


Written with StackEdit.

Gaussian Models的更多相关文章

  1. deep learning 的综述

    从13年11月初开始接触DL,奈何boss忙or 各种问题,对DL理解没有CSDN大神 比如 zouxy09等 深刻,主要是自己觉得没啥进展,感觉荒废时日(丢脸啊,这么久....)开始开文,即为记录自 ...

  2. A Statistical View of Deep Learning (II): Auto-encoders and Free Energy

    A Statistical View of Deep Learning (II): Auto-encoders and Free Energy With the success of discrimi ...

  3. Growing Pains for Deep Learning

    Growing Pains for Deep Learning Advances in theory and computer hardware have allowed neural network ...

  4. 混合高斯模型(GMM)推导及实现

    作者:桂. 时间:2017-03-20  06:20:54 链接:http://www.cnblogs.com/xingshansi/p/6584555.html 声明:欢迎被转载,不过记得注明出处哦 ...

  5. 混合拉普拉斯分布(LMM)推导及实现

    作者:桂. 时间:2017-03-21  07:25:17 链接:http://www.cnblogs.com/xingshansi/p/6592599.html 声明:欢迎被转载,不过记得注明出处哦 ...

  6. 基于EM的多直线拟合

    作者:桂. 时间:2017-03-22  06:13:50 链接:http://www.cnblogs.com/xingshansi/p/6597796.html 声明:欢迎被转载,不过记得注明出处哦 ...

  7. Reading lists for new LISA students(转)

    Research in General How to write a great research paper Basics of machine learning http://www.iro.um ...

  8. 基于EM的多直线拟合实现及思考

    作者:桂. 时间:2017-03-22  06:13:50 链接:http://www.cnblogs.com/xingshansi/p/6597796.html 声明:欢迎被转载,不过记得注明出处哦 ...

  9. ICLR 2014 International Conference on Learning Representations深度学习论文papers

    ICLR 2014 International Conference on Learning Representations Apr 14 - 16, 2014, Banff, Canada Work ...

随机推荐

  1. React 入门学习笔记2

    摘自阮一峰:React入门实例教程,转载请注明出处. 一.获取真实的DOM节点 组件并不是真实的 DOM 节点,而是存在于内存之中的一种数据结构,叫做虚拟 DOM (virtual DOM).只有当它 ...

  2. 关于HTML Button点击自动刷新页面的问题解决

    原因 button,input type=button按钮在IE和w3c,firefox浏览器区别: 1.当在IE浏览器下面时,button标签按钮,input标签type属性为button的按钮是一 ...

  3. python 编码规范起源:PEP8 编码规范中文版

    PEP: 8 标题: Python代码的样式指南 版: c451868df657 最后修改: 2016-06-08 10:43:53 -0400(2016年6月8日星期三) 作者: Guido van ...

  4. Spring事务(二)事务自定义标签

    摘要: 本文结合<Spring源码深度解析>来分析Spring 5.0.6版本的源代码.若有描述错误之处,欢迎指正. 目录 一.注册 InfrastructureAdvisorAutoPr ...

  5. undefined reference to `sqrt'的问题

    主要问题是math.h这个头文件虽然在/lib/include 下有定义,但是该文件内并没有sqrt()的定义.解决的办法是:在编译的时候在后面加上-lm,意思是链接到math函数库. 在gcc下用到 ...

  6. 【数据结构与算法】001—栈与队列(Python)

    栈与队列 1.栈(stacks)是一种只能通过访问其一端来实现数据存储与检索的线性数据结构,具有后进先出(last in first out,LIFO)的特征 2.队列(queue)是一种具有先进先出 ...

  7. FPGA中ROM与RAM相关知识总结(五)

    把看到的关于存储的一些东西整理一下,有些话来自于网友,所以还是那句话,看到的人要带着自己的思考去看,记住尽信书不如无书,fighting!!! 一.基本概念 最熟悉的两个词语应该是RAM与ROM,RA ...

  8. Verilog_Day2

    Verilog_Day1 在CSDN博客上.http://blog.csdn.net/m0_38073085 第三章: 书上基本知识 每个Verilog程序包括4个主要部分:端口定义,I/O说明,内部 ...

  9. 2.Built-in types-基本数据类型(Dart中文文档)

    初次翻译,部分内容并非按字面翻译,是按本人理解进行了内容重组.如有错误望指正. Dart语言内置如下数据类型: numbers strings booleans lists (所谓的数组) maps ...

  10. WPF 绑定StaticResource到控件的方法

    原文:WPF 绑定StaticResource到控件的方法 资源文件内的属性能否直接通过绑定应用到控件?答案是肯定的. 比如,我们要直接把下面的<SolidColorBrush x:Key=&q ...