链接:

http://poj.org/problem?id=1797

Heavy Transportation
Time Limit: 3000MS   Memory Limit: 30000K
Total Submissions: 25089   Accepted: 6647

Description

Background 
Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand business. But he needs a clever man who tells him whether there really is a way from the place his customer has build his giant steel crane to the place where it is needed on which all streets can carry the weight. 
Fortunately he already has a plan of the city with all streets and bridges and all the allowed weights.Unfortunately he has no idea how to find the the maximum weight capacity in order to tell his customer how heavy the crane may become. But you surely know.

Problem 
You are given the plan of the city, described by the streets (with weight limits) between the crossings, which are numbered from 1 to n. Your task is to find the maximum weight that can be transported from crossing 1 (Hugo's place) to crossing n (the customer's place). You may assume that there is at least one path. All streets can be travelled in both directions.

Input

The first line contains the number of scenarios (city plans). For each city the number n of street crossings (1 <= n <= 1000) and number m of streets are given on the first line. The following m lines contain triples of integers specifying start and end crossing of the street and the maximum allowed weight, which is positive and not larger than 1000000. There will be at most one street between each pair of crossings.

Output

The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the maximum allowed weight that Hugo can transport to the customer. Terminate the output for the scenario with a blank line.

Sample Input

1
3 3
1 2 3
1 3 4
2 3 5

Sample Output

Scenario #1:
4

代码:

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std; #define N 1100
#define INF 0x3f3f3f3f3f int n, m, dist[N], G[N][N], v[N]; int DIST(int S, int E)
{
dist[]=;
v[]=; for(int i=; i<=n; i++)
dist[i] = G[][i]; for(int i=; i<=n; i++)
{
int index=-, MAX=-; for(int j=; j<=n; j++)
{
if(v[j]== && dist[j]>MAX)
{
index = j, MAX = dist[j];
}
}
v[index]=; for(int j=; j<=n; j++)
{
if(v[j]==)
{
int tmp = min(dist[index], G[index][j]);
if(tmp>dist[j])
dist[j]=tmp;
}
}
}
return dist[E];
} int main()
{
int t, k=; scanf("%d", &t); while(t--)
{
int a, b, w, i;
scanf("%d%d", &n, &m); memset(v, , sizeof(v));
memset(G, -, sizeof(G)); for(i=; i<=m; i++)
{
scanf("%d%d%d", &a, &b, &w);
G[a][b]=G[b][a]=max(G[a][b], w);
} int ans = DIST(, n); printf("Scenario #%d:\n", k++);
printf("%d\n\n", ans);
}
return ;
}

类似于 最大生成树

#include <iostream>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
using namespace std;
const int INF = (<<)-;
#define min(a,b) (a<b?a:b)
#define max(a,b) (a>b?a:b)
#define N 1100 int n, m, dist[N], G[N][N], vis[N]; int prim()
{
int i, j, ans = INF; for(i=; i<=n; i++)
dist[i] = G[][i];
dist[] = ; memset(vis, , sizeof(vis));
vis[] = ; for(i=; i<=n; i++)
{
int index = , Max = -;
for(j=; j<=n; j++)
{
if(!vis[j] && dist[j]>Max)
{
Max = dist[j];
index = j;
}
} if(index==) break; vis[index] = ; ans = min(ans, Max); if(index==n) return ans; ///当到达 n 点的时候结束 for(j=; j<=n; j++)
{
if(!vis[j] && dist[j]<G[index][j])
dist[j] = G[index][j];
}
} return ans;
} int main()
{
int t, iCase=;
scanf("%d", &t);
while(t--)
{
int i, u, v, x; scanf("%d%d", &n, &m); memset(G, -, sizeof(G)); for(i=; i<=m; i++)
{
scanf("%d%d%d", &u, &v, &x);
G[u][v] = G[v][u] = max(G[u][v], x);
} printf("Scenario #%d:\n%d\n\n", iCase++, prim());
}
return ;
}

(最短路) Heavy Transportation --POJ--1797的更多相关文章

  1. Heavy Transportation POJ 1797 最短路变形

    Heavy Transportation POJ 1797 最短路变形 题意 原题链接 题意大体就是说在一个地图上,有n个城市,编号从1 2 3 ... n,m条路,每条路都有相应的承重能力,然后让你 ...

  2. Heavy Transportation POJ - 1797

    题意 给你n个点,1为起点,n为终点,要求所有1到n所有路径中每条路径上最小值的最最值. 思路 不想打最短路 跑一边最大生成树,再扫一遍1到n的路径,取最小值即可,类似Frogger POJ - 22 ...

  3. kuangbin专题专题四 Heavy Transportation POJ - 1797

    题目链接:https://vjudge.net/problem/POJ-1797 思路:请参考我列出的另一个题目,和这个题目要求的值相反,另一个清楚后,这个写的解释就明白了. 另一个类似题目的博客:h ...

  4. POJ 1797 ——Heavy Transportation——————【最短路、Dijkstra、最短边最大化】

    Heavy Transportation Time Limit:3000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64 ...

  5. POJ 1797 Heavy Transportation(最大生成树/最短路变形)

    传送门 Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 31882   Accept ...

  6. POJ 1797 Heavy Transportation (最短路)

    Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 22440   Accepted:  ...

  7. POJ 1797 Heavy Transportation (Dijkstra变形)

    F - Heavy Transportation Time Limit:3000MS     Memory Limit:30000KB     64bit IO Format:%I64d & ...

  8. POJ 1797 Heavy Transportation

    题目链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K T ...

  9. poj 1797 Heavy Transportation(最大生成树)

    poj 1797 Heavy Transportation Description Background Hugo Heavy is happy. After the breakdown of the ...

随机推荐

  1. HQL中的Like查询需要注意的地方

    public List getOrgan(String organCode, String organName) {    String hsql;    List list; if (organCo ...

  2. Haskell语言学习笔记(68)HDBC

    安装 HDBC-Sqlite3 $ cabal install HDBC-Sqlite3 Installed HDBC-sqlite3-2.3.3.1 Prelude> :m Database. ...

  3. 协变(covariance),逆变(contravariance)与不变(invariance)

    协变,逆变与不变 能在使用父类型的场景中改用子类型的被称为协变. 能在使用子类型的场景中改用父类型的被称为逆变. 不能做到以上两点的被称为不变. 以上的场景通常包括数组,继承和泛型. 协变逆变与泛型( ...

  4. adb的一些常用的命令

    如果在dos界面想要直接用adb的话,需要将anroidsdk安装目录下的tools和platform-tools以及加入到环境变量path中. 查看当前的设备(包括真机和模拟器):adb devic ...

  5. 向数据库添加学生信息。存放在REQUEST对象里

    代码前几天已经发过了,但是程序一直还没运行出来,今天重新建立了一个数据库,才可以,下面补充上数据截图

  6. C# 获取textbox行数

    当textbox为多行时,获取它的行数:int count = this.txtMsgInfo.Lines.GetUpperBound(0);

  7. chm 文件生成器

    1.看云:官网 https://www.kancloud.cn/price 价格如下:

  8. linux系统分区表修复

    有些时候在系统突然断电或硬盘只读后在看机会出现报错,开机到不了登录界面,而是来到一个提示: Give root password for maintenance(or type Control-d t ...

  9. VirtualBox中的虚拟机在Ubuntu 下无法启动之问题解决

    我通过重新安装box解决的.发现,box安装,直接apt install有可能会出现虚拟机无法启动的问题. 一.添加VirtualBox的源并安装5.1版本virtualbox官网:https://w ...

  10. Python3 input() 函数

    Python3 input() 函数  Python3 内置函数 Python3.x 中 input() 函数接受一个标准输入数据,返回为 string 类型. 注意:在 Python3.x 中 ra ...