数同余的个数显然是要把\(i,j\)分别放到\(\equiv\)的两边

$ (a_i + a_j)(a_i^2 + a_j^2) \equiv k \bmod p $

左右两边乘上\((a_i-a_j)\)

得:\((a_i^2-a_j^2)(a_i^2+a_j^2)\equiv a_ik-a_jk \bmod p\Longrightarrow a_i^4-a_j^4\equiv a_ik-a_jk \bmod p\Longrightarrow a_i^4-a_ik\equiv a_j^4-a_jk \bmod p\)

CF1188B/E Count Pairs(数学)的更多相关文章

  1. CodeForces - 1189 E.Count Pairs (数学)

    You are given a prime number pp, nn integers a1,a2,…,ana1,a2,…,an, and an integer kk. Find the numbe ...

  2. [MeetCoder] Count Pairs

    Count Pairs Description You are given n circles centered on Y-aixs. The ith circle’s center is at po ...

  3. CodeForces - 1189E Count Pairs(平方差)

    Count Pairs You are given a prime number pp, nn integers a1,a2,…,ana1,a2,…,an, and an integer kk. Fi ...

  4. [CF1188B]Count Pairs 题解

    前言 这道题目是道好题. 第一次div-2进前100,我太弱了. 题解 公式推导 我们观察这个式子. \[(a_i+a_j)(a_i^2+a_j^2)\equiv k \mod p\] 感觉少了点什么 ...

  5. CF1188B Count Pairs

    [题目描述] 给定一个质数 \(p\) , 一个长度为 \(n\)n 的序列 \(a = \{ a_1,a_2,\cdots,a_n\}\)一个整数 \(k\). 求所有数对 \((i, j)\) ( ...

  6. Gym-100923I-Por Costel and the Pairs(数学,思维)

    链接: https://vjudge.net/problem/Gym-100923I 题意: We don't know how Por Costel the pig arrived at FMI's ...

  7. Codeforces 1188B - Count Pairs(思维题)

    Codeforces 题面传送门 & 洛谷题面传送门 虽说是一个 D1B,但还是想了我足足 20min,所以还是写篇题解罢( 首先注意到这个式子里涉及两个参数,如果我们选择固定一个并动态维护另 ...

  8. HDU 4472 Count(数学 递归)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4472 Problem Description Prof. Tigris is the head of ...

  9. HDU 5056 Boring count(数学)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5056 Problem Description You are given a string S con ...

随机推荐

  1. power shell命令添加SharePoint用户组与用户(用户为域用户)

    查看SharePoint用户组 Get-PnPGroup 查看某一用户组 Get-PnPGroup -Identity "用户组名" 查看某一用户组下的所有成员 Get-PnPGr ...

  2. NEST routing timeout scroll

    /// <summary> /// PUT /employee/employee/9e5e50da-7740-488e-bee2-b24951435691?routing=test_rou ...

  3. 修改redhat7默认显示语言从中文为英文

    [delmore@localhost Desktop]$ su                               //切换到最高权限 Password:                    ...

  4. JSP页面嵌套c:forEach

    做java web项目有时候会需要在页面使用嵌套<c:forEach>遍历一个List,但是嵌套很容易忽略一些东西导致出错 后台代码: List<Map<String, Obj ...

  5. springboot2.1.3+spring-session2.1.4分库处理

    使用spring session框架来统一管理session,该框架支持jdbc.redis存储,使用非常简单,可以去官网查看文档一步步接入即可,官网文档如下:https://docs.spring. ...

  6. altium designer(AD13)隐藏敷铜的方法

    覆铜,就是将PCB上闲置的空间作为基准面,然后用固体铜填充,这些铜区又称为灌铜.敷铜的意义在于,减小地线阻抗,提高抗干扰能力;降低压降,提高电源效率;还有,与地线相连,减小环路面积. 如果拿到别人的P ...

  7. LFU(最近最不常用)实现(python)

    from collections import defaultdict, OrderedDict class Node: __slots__ = 'key', 'val', 'cnt' def __i ...

  8. python中的lambda、map、reduce、filter

    filter(function, sequence):对sequence中的item依次执行function(item),将执行结果为True的item组成一个List/String/Tuple(取决 ...

  9. 如何防护DDOS攻击策略

    DDoS是目前最凶猛.最难防御的网络攻击之一.现实情况是,这个世界级难题还没有完美的.彻底的解决办法,但采取适当的措施以降低攻击带来的影响.减少损失是十分必要的.将DDoS防御作为整体安全策略的重要部 ...

  10. destoon模板存放调取规则

    一.模板存放及调用规则      模板存放于系统 template 目录,template 目录下的一个目录例如 template/default/ 即为一套模板 模板文件以 .htm 为扩展名,可直 ...