AtCoder Beginner Contest 136

题目链接

A - +-x

直接取\(max\)即可。

Code
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 2e5 + 5; int main() {
ios::sync_with_stdio(false); cin.tie(0);
int a, b;
cin >> a >> b;
cout << max(a + b, max(a - b, a * b));
return 0;
}

B - One Clue

直接输出,注意判断左右边界。

Code
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 2e5 + 5; int main() {
ios::sync_with_stdio(false); cin.tie(0);
int k, x;
cin >> k >> x;
for(int i = max(-1000000, x - k + 1); i <= min(1000000, x + k - 1); i++) cout << i << ' ';
return 0;
}

C - Green Bin

\(map\)统计\(string\)出现次数即可。

Code
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 2e5 + 5;
map <string, int> mp;
string s;
int n;
int main() {
ios::sync_with_stdio(false); cin.tie(0);
cin >> n;
ll ans = 0;
for(int i = 1; i <= n; i++) {
cin >> s;
sort(s.begin(), s.end());
if(mp.find(s) != mp.end()) ans += mp[s];
mp[s]++;
}
cout << ans;
return 0;
}

D - Summer Vacation

时间倒流。

每一个工作只能在某一个时刻之前开始进行才能获得收益。考虑倒序枚举时间,在每一个位置将所有工作加入,取最大收益即可。

Code
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1e5 + 5;
int n, m;
vector <int> c[N];
struct node{
int A, B;
}a[N];
int main() {
ios::sync_with_stdio(false); cin.tie(0);
cin >> n >> m;
for(int i = 1; i <= n; i++) cin >> a[i].B >> a[i].A;
for(int i = 1; i <= n; i++) {
if(a[i].B <= m) c[m - a[i].B].push_back(a[i].A);
}
priority_queue <int> q;
int ans = 0;
for(int i = m - 1; i >= 0; i--) {
for(auto it : c[i]) q.push(it);
if(!q.empty()) {
ans += q.top(); q.pop();
}
}
cout << ans;
return 0;
}

E - Coins Respawn

首先\(dfs\)一次找到所有能够到达\(n\)的点,然后在这些点上面跑\(spfa\)+判正环就行。

Code
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 2505, M = 5005;
int n, m, p;
struct Edge{
int u,v,w,next;
}e[M<<1];
int tot, head[N];
void adde(int u,int v,int w){
e[tot].u=u;e[tot].v=v;e[tot].w=w;e[tot].next=head[u];head[u]=tot++;
}
bool ok[N], vis[N];
bool g[N][N];
int c[N], d[N], dis[N];
void dfs(int u) {
ok[u] = 1;
for(int i = 1; i <= n; i++) {
if(g[u][i] && !ok[i]) dfs(i);
} }
int spfa(int s){
queue <int> q;
memset(d,0xcf,sizeof(d));
memset(vis,0,sizeof(vis));memset(c,0,sizeof(c));
q.push(s);vis[s]=1;d[s]=0;c[s]=1;dis[s]=0;
while(!q.empty()){
int u=q.front();q.pop();vis[u]=0;
if(c[u]>n){
return d[0];
}
for(int i=head[u];i!=-1;i=e[i].next){
int v=e[i].v;
if(!ok[v]) continue;
if(d[v]<d[u]+e[i].w){
d[v]=d[u]+e[i].w;
dis[v]=dis[u]+1;
if(!vis[v]){
vis[v]=1;
q.push(v);
c[v]++;
}
}
}
}
return d[n];
}
int main() {
ios::sync_with_stdio(false); cin.tie(0);
cin >> n >> m >> p;
memset(head, -1, sizeof(head));
for(int i = 1; i <= m; i++) {
int u, v, w; cin >> u >> v >> w;
adde(u, v, w - p);
g[v][u] = 1;
}
dfs(n);
int t = spfa(1);
if(t == d[0]) cout << -1;
else cout << max(0, t);
return 0;
}

F - Polynomial Construction

考虑拉格朗日插值,那么答案就是:

\[y=\sum_{i=0}^{p-1}a_i\prod_{j\neq i}\frac{x-j}{i-j}=\sum_{i=0}^{p-1}a_i\prod_{j\neq i}x-j\prod_{j\neq i}\frac{1}{i-j}
\]

现在就考虑如何快速求\(\prod_{j\neq i}x-j\)。

这部分可以直接递推计算,设\(dp[i][j]\)表示考虑\(\prod_{k=0}^{i}x-k\)的结果中\(x^j\)的系数是多少,那么就有:

  • \(dp[i][0]=dp[i-1][0]*(-i)\)
  • \(dp[i][j]=dp[i-1][j-1]-dp[i-1][j]*i\)

因为式子中有限制条件:\(j\neq i\),那么就考虑如何去掉一个\(x-i\):

  • \(dp[n-1][j]=dp[n-1][j+1](if:i=0)\)
  • \(dp[n-1][j]=\frac{dp[n-1][j]-tmp}{i}(else)\),\(tmp\)表示前面的对后面的贡献。

详见代码:

Code
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 3000;
int n, mod;
int a[N], res[N];
ll qp(ll a, ll b) {
ll ans = 1;
while(b) {
if(b & 1) ans = ans * a % mod;
a = a * a % mod;
b >>= 1;
}
return ans;
}
int inv[N], inv2[N];
int dp[N][N];
int add(int x, int y) {
x += y;
if(x >= mod) x -= mod;
return x;
}
int sub(int x, int y) {
x -= y;
if(x < 0) x += mod;
return x;
}
int mul(ll x, ll y) {
x = x * y % mod;
if(x < 0) x += mod;
return x;
}
void pre() {
for(int i = 1; i <= n; i++) inv[i] = qp(i, mod - 2);
for(int i = 1; i <= n; i++) inv2[i] = qp(mod - i, mod - 2);
dp[0][1] = 1;
for(int i = 1; i < n; i++) {
for(int j = 0; j <= i + 1; j++) {
dp[i][j] = mul(dp[i - 1][j], mod - i);
if(j) dp[i][j] = add(dp[i][j], dp[i - 1][j - 1]);
// cout << i << ' ' << j << ' ' << dp[i][j] << '\n';
}
}
}
int main() {
ios::sync_with_stdio(false); cin.tie(0);
cin >> n; mod = n;
for(int i = 0; i < n; i++) cin >> a[i];
pre();
for(int i = 0; i < n; i++) if(a[i]) {
int ans = 1;
for(int j = 0; j < n; j++) {
if(i > j) ans = mul(ans, inv[i - j]);
if(i < j) ans = mul(ans, inv2[j - i]);
}
int tmp = 0;
if(i == 0) tmp = dp[n - 1][1];
res[0] = add(res[0], mul(ans, tmp));
for(int j = 1; j < n; j++) {
tmp = mul(sub(dp[n - 1][j], tmp), inv2[i]);
if(i == 0) tmp = dp[n - 1][j + 1];
res[j] = add(res[j], mul(ans, tmp));
}
}
for(int i = 0; i < n; i++) cout << res[i] << " \n"[i == n - 1];
return 0;
}

AtCoder Beginner Contest 136的更多相关文章

  1. AtCoder Beginner Contest 100 2018/06/16

    A - Happy Birthday! Time limit : 2sec / Memory limit : 1000MB Score: 100 points Problem Statement E8 ...

  2. AtCoder Beginner Contest 052

    没看到Beginner,然后就做啊做,发现A,B太简单了...然后想想做完算了..没想到C卡了一下,然后还是做出来了.D的话瞎想了一下,然后感觉也没问题.假装all kill.2333 AtCoder ...

  3. AtCoder Beginner Contest 053 ABCD题

    A - ABC/ARC Time limit : 2sec / Memory limit : 256MB Score : 100 points Problem Statement Smeke has ...

  4. AtCoder Beginner Contest 137 F

    AtCoder Beginner Contest 137 F 数论鬼题(虽然不算特别数论) 希望你在浏览这篇题解前已经知道了费马小定理 利用用费马小定理构造函数\(g(x)=(x-i)^{P-1}\) ...

  5. AtCoder Beginner Contest 076

    A - Rating Goal Time limit : 2sec / Memory limit : 256MB Score : 100 points Problem Statement Takaha ...

  6. AtCoder Beginner Contest 079 D - Wall【Warshall Floyd algorithm】

    AtCoder Beginner Contest 079 D - Wall Warshall Floyd 最短路....先枚举 k #include<iostream> #include& ...

  7. AtCoder Beginner Contest 064 D - Insertion

    AtCoder Beginner Contest 064 D - Insertion Problem Statement You are given a string S of length N co ...

  8. AtCoder Beginner Contest 075 D - Axis-Parallel Rectangle【暴力】

    AtCoder Beginner Contest 075 D - Axis-Parallel Rectangle 我要崩溃,当时还以为是需要什么离散化的,原来是暴力,特么五层循环....我自己写怎么都 ...

  9. AtCoder Beginner Contest 075 C bridge【图论求桥】

    AtCoder Beginner Contest 075 C bridge 桥就是指图中这样的边,删除它以后整个图不连通.本题就是求桥个数的裸题. dfn[u]指在dfs中搜索到u节点的次序值,low ...

随机推荐

  1. Spring Events

    https://www.baeldung.com/spring-events by Eugen Paraschiv Spring+ I just announced the new Learn Spr ...

  2. 【操作系统之十一】任务队列、CPU Load、指令乱序、指令屏障

    一.CPU Loadcpu load是对使用或者等待cpu进程的统计(数量的累加):每一个使用(running)或者等待(runnable)CPU的进程,都会使load值+1;每一个结束的进程,都会使 ...

  3. jquery如何遍历table,并对table里的某一个单元格进行操作

    1.如何根据每一行的某一列的值进行比较或其他操作,进而修改另一列的值或属性. $("#table_id tbody tr").each(function(){ var a = $( ...

  4. 使用springboot mybatis 查询时实体类中的驼峰字段值为null

    看到返回结果以后主要分析了一下情况: 实体类的get.set方法确实 mapper.xml文件中的resultMap.resultType等原因导致 数据库中数据存在问题 经过检查与验证发现以上都不存 ...

  5. php-微信分享签名

    //测试 $APPID='*************************'; $SECRET='***********************'; $url = trim($_REQUEST['u ...

  6. Java开发月薪2W的知乎讨论记录截取

    1. 推荐看 作者:匿名用户 链接:https://www.zhihu.com/question/39890405/answer/83676977 来源:知乎 著作权归作者所有.商业转载请联系作者获得 ...

  7. Git 解决合并分支时的冲突

    参考链接:https://www.liaoxuefeng.com/wiki/896043488029600/900004111093344 创建分支时,新分支的文件内容建立在原分支的基础上,我们称这时 ...

  8. Java之路---Day13

    2019-10-28-22:40:14 目录 1.Instanceof关键字 2.Final关键字 2.1Final关键字修饰类 2.2Final关键字修饰成员方法 2.3Final关键字修饰局部变量 ...

  9. MAC电脑下Appium + python3 + robotframework ios的真机测试环境搭建

    本人的环境搭建前的准备,MAC电脑一台(macOS Mojave 10.14.0及以上),Xcode 10.0及以上   ,自己注册的一个Apple ID 账户,必须你的电脑能连接互联网,最好不要用公 ...

  10. 关于银企直连中银行通信类 配置篇 EPIC_PROC

    简单介绍:SAP银行企业直连,英文全称:Electronic Payment Integration(For China),简称EPIC,是SAP中国为本地化的需求开发的一款产品,以银企直连为支撑,主 ...