题目

\(dfs+\)证明。

对于题目描述,可以发现\(K\)其实就是大于等于原图中最大度数的最小奇数,因为如果原图度数最大为奇数,则最多颜色肯定为K,而如果原图最大度数为偶数,则\(K\)又是奇数,则最多颜色也肯定小于等于\(K\)。

然后可以\(dfs\)染色,染色有两种方法,一种是枚举颜色,然后判断可行性并考虑回溯。这种搜索复杂度很大。

而另一种方法就是直接贪心搜索,使每个当前搜到的点取除去与它相连的颜色的最小值,然后并不需要判断可行性,因为每次都是将当前颜色尽可能的不相同。

#define N 300101
#include <bits/stdc++.h>
using namespace std;
struct edg {
int to, nex;
}e[N];
int n, m, k, cnt, lin[N], degree[N], color[N], flag[N];
inline void add(int f, int t)
{
degree[f]++;
e[++cnt].to = t;
e[cnt].nex = lin[f];
lin[f] = cnt;
}
void dfs(int now)//now的颜色要取除去与它相连的颜色 的最小值,因为这样才能将每个颜色都利用
{
// int sum = 0;
memset(flag, 0, sizeof(flag));
for (int i = lin[now]; i; i = e[i].nex)
{
int to = e[i].to;
if (color[to])
flag[color[to]] = 1;
}
for (int i = 1; i <= k; i++)
if (!flag[i])
{
color[now] = i;
break;
}
for (int i = lin[now]; i; i = e[i].nex)
if (!color[e[i].to])
dfs(e[i].to);
}
inline void clear()
{
memset(e, 0, sizeof(e));
memset(lin, 0, sizeof(lin));
memset(degree, 0, sizeof(degree));
memset(color, 0, sizeof(color));
k = cnt = 0;
}
int main()
{
while (cin >> n >> m)
{
clear();
for (int i = 1; i <= m; i++)
{
int a, b;
scanf("%d%d", &a, &b);
add(a, b);
add(b, a);
}
for (int i = 1; i <= n; i++)
k = max(k, degree[i]);
k |= 1;
printf("%d\n", k);
dfs(1);
for (int i = 1; i <= n; i++)
printf("%d\n", color[i]);
puts("");
}
}

UVA 1613 K度图染色的更多相关文章

  1. UVA 1613 K-Graph Oddity K度图着色 (构造)

    题意:在一个n个点的无向连通图中,n是奇数,k是使得所有点的度数不超过k的最小奇数,询问一种染色方案,使得相邻点的颜色不同. 题解:一个点和周围的点的颜色数加起来最大为它的度数+1:如果最大度数是偶数 ...

  2. UVA 193 Graph Coloring 图染色 DFS 数据

    题意:图上的点染色,给出的边的两个点不能都染成黑色,问最多可以染多少黑色. 很水的一题,用dfs回溯即可.先判断和当前点相连的点是否染成黑色,看这一点是否能染黑色,能染色就分染成黑色和白色两种情况递归 ...

  3. BZOJ1006:[HNOI2008]神奇的国度(弦图染色)

    Description K国是一个热衷三角形的国度,连人的交往也只喜欢三角原则.他们认为三角关系:即AB相互认识,BC相互认识,CA相互认识,是简洁高效的. 为了巩固三角关系,K国禁止四边关系,五边关 ...

  4. 如何看K线图基础知识

    在日K线图中一般白线.黄线.紫线.绿线依次分别表示:5.10.20.60日移动平均线,但这并不是固定的,会根据设置的不同而不同,比如你也可以在系统里把它们设为5.15.30.60均线. 你看K线图的上 ...

  5. C#下如何用NPlot绘制期货股票K线图(3):设计要显示的股票价格图表窗口并定义相应类的成员及函数

    [内容简介] 上一篇介绍了要显示K线图所需要的数据结构,及要动态显示K线图,需要动态读取数据文件必需的几个功能函数.本篇介绍要显示蜡烛图所用到的窗口界面设计及对应类定义.下面分述如下: [窗口界面] ...

  6. 【POJ 1639】 Picnic Planning (最小k度限制生成树)

    [题意] 有n个巨人要去Park聚会.巨人A和先到巨人B那里去,然后和巨人B一起去Park.B君是个土豪,他家的停车场很大,可以停很多车,但是Park的停车场是比较小.只能停k辆车.现在问你在这个限制 ...

  7. 最小k度限制生成树

    [题目描述] 给你一个图,n个点,m条边,求一颗生成树满足如下条件: (1)结点1的度不超过k. (2)在(1)条件下所求生成树最小. [算法引入] 最小k度限制生成树,就是指有特殊的某一点的度不能超 ...

  8. poj1639 Picnic Planning,K度限制生成树

    题意: 矮人虽小却喜欢乘坐巨大的轿车,车大到能够装下不管多少矮人.某天,N(N≤20)个矮人打算到野外聚餐.为了集中到聚餐地点,矮人A 要么开车到矮人B 家中,留下自己的轿车在矮人B 家,然后乘坐B ...

  9. Tableau绘制K线图、布林线、圆环图、雷达图

    Tableau绘制K线图.布林线.圆环图.雷达图 本文首发于博客冰山一树Sankey,去博客浏览效果更好.直接右上角搜索该标题即可 一. K线图 1.1 导入数据源 1.2 拖拽字段 将[日期]托到列 ...

随机推荐

  1. WPF 不要给 Window 类设置变换矩阵(应用篇)

    原文:WPF 不要给 Window 类设置变换矩阵(应用篇) WPF 的 Window 类是不允许设置变换矩阵的.不过,总会有小伙伴为了能够设置一下试图绕过一些验证机制. 不要试图绕过,因为你会遇到更 ...

  2. git add提交时关于 LF will be replaced by CRLF in 问题出现的原因以及解决方式

    最近在新创建的github项目中add新框架代码时,出现了LF will be replaced by CRLF in的问题,以下为问题截图 查阅资料才知道,LF和FRLF是两种不同的换行格式,这个警 ...

  3. PKCS 标准

    PKCS 标准 The Public-Key Cryptography Standards (PKCS)是由美国RSA数据安全公司及其合作伙伴制定的一组公钥密码学标准,其中包括证书申请.证书更新.证书 ...

  4. Java知识回顾 (11) 异常处理

    距离最近的 Java知识回顾系列(10),2019.4.24日,到现在,已经近半年过去了. 感觉,做一件事情,如果有头无尾,实在不好,心里会一直悬着.所以,现在继续上面的内容. 再次声明,正如(1)中 ...

  5. 浅析JavaScript异步

    一直以来都知道JavaScript是一门单线程语言,在笔试过程中不断的遇到一些输出结果的问题,考量的是对异步编程掌握情况.一般被问到异步的时候脑子里第一反应就是Ajax,setTimseout...这 ...

  6. commonjs 与 es6相关Module语法的区别

    1.export 在接口名字与模块内部的变量之间建立了一一对应的关系,export输出的接口,与其模块内对应的变量值是动态绑定的,即通过暴露的接口可以取到模块内与之对应绑定变量的实时的值. commo ...

  7. JavaScript: 自动类型转换

    我们都知道,JavaScript是类型松散型语言,在声明一个变量时,我们是无法明确声明其类型的,变量的类型是根据其实际值来决定的,而且在运行期间,我们可以随时改变这个变量的值和类型,另外,变量在运行期 ...

  8. Android笔记(四十) Android中的数据存储——SQLite(二) insert

    准备工作: 我们模拟一个注册的页面,先看UI 我们需要创建一个数据库:user,数据库包含表user,user表包含字段id.username.password.mobilephone MainAct ...

  9. mybatis的XML中注释需谨慎

    报错内容: java.sql.SQLException: Parameter index out of range (3 > number of parameters, which is 2) ...

  10. 使用Cloudera Manager部署HUE

    使用Cloudera Manager部署HUE 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.   一.添加HUE服务 1>.进入CM服务安装向导 2>.选择需要安装的h ...