python平台下实现xgboost算法及输出的解释
python平台下实现xgboost算法及输出的解释
1. 问题描述
近来, 在python环境下使用xgboost算法作若干的机器学习任务, 在这个过程中也使用了其内置的函数来可视化树的结果, 但对leaf value的值一知半解; 同时, 也遇到过使用xgboost 内置的predict 对测试集进行打分预测, 发现若干样本集的输出分值是一样的. 这个问题该怎么解释呢? 通过翻阅Stack Overflow 上的相关问题, 以及搜索到的github上的issue回答, 应该算初步对这个问题有了一定的理解, 特来分享!
2. 数据集
在这里, 使用经典的鸢尾花的数据来说明. 使用二分类的问题来说明, 故在这里只取前100行的数据.
from sklearn import datasets
iris = datasets.load_iris()
data = iris.data[:100]
print data.shape
#(100L, 4L)
#一共有100个样本数据, 维度为4维
label = iris.target[:100]
print label
#正好选取label为0和1的数据
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
3. 训练集与测试集
from sklearn.cross_validation import train_test_split
train_x, test_x, train_y, test_y = train_test_split(data, label, random_state=0)
4. Xgboost建模
4.1 模型初始化设置
import xgboost as xgb
dtrain=xgb.DMatrix(train_x,label=train_y)
dtest=xgb.DMatrix(test_x)
params={'booster':'gbtree',
'objective': 'binary:logistic',
'eval_metric': 'auc',
'max_depth':4,
'lambda':10,
'subsample':0.75,
'colsample_bytree':0.75,
'min_child_weight':2,
'eta': 0.025,
'seed':0,
'nthread':8,
'silent':1}
watchlist = [(dtrain,'train')]
4.2 建模与预测
bst=xgb.train(params,dtrain,num_boost_round=100,evals=watchlist)
ypred=bst.predict(dtest)
# 设置阈值, 输出一些评价指标
y_pred = (ypred >= 0.5)*1
from sklearn import metrics
print 'AUC: %.4f' % metrics.roc_auc_score(test_y,ypred)
print 'ACC: %.4f' % metrics.accuracy_score(test_y,y_pred)
print 'Recall: %.4f' % metrics.recall_score(test_y,y_pred)
print 'F1-score: %.4f' %metrics.f1_score(test_y,y_pred)
print 'Precesion: %.4f' %metrics.precision_score(test_y,y_pred)
metrics.confusion_matrix(test_y,y_pred)
Out[23]:
AUC: 1.0000
ACC: 1.0000
Recall: 1.0000
F1-score: 1.0000
Precesion: 1.0000
array([[13, 0],
[ 0, 12]], dtype=int64)
Yeah, 完美的模型, 完美的预测!
4.3 可视化输出
#对于预测的输出有三种方式
?bst.predict
Signature: bst.predict(data, output_margin=False, ntree_limit=0, pred_leaf=False, pred_contribs=False, approx_contribs=False)
pred_leaf : bool
When this option is on, the output will be a matrix of (nsample, ntrees)
with each record indicating the predicted leaf index of each sample in each tree.
Note that the leaf index of a tree is unique per tree, so you may find leaf 1
in both tree 1 and tree 0.
pred_contribs : bool
When this option is on, the output will be a matrix of (nsample, nfeats+1)
with each record indicating the feature contributions (SHAP values) for that
prediction. The sum of all feature contributions is equal to the prediction.
Note that the bias is added as the final column, on top of the regular features.
4.3.1 得分
默认的输出就是得分, 这没什么好说的, 直接上code.
ypred = bst.predict(dtest)
ypred
Out[32]:
array([ 0.20081411, 0.80391562, 0.20081411, 0.80391562, 0.80391562,
0.80391562, 0.20081411, 0.80391562, 0.80391562, 0.80391562,
0.80391562, 0.80391562, 0.80391562, 0.20081411, 0.20081411,
0.20081411, 0.20081411, 0.20081411, 0.20081411, 0.20081411,
0.20081411, 0.80391562, 0.20081411, 0.80391562, 0.20081411], dtype=float32)
在这里, 就可以观察到文章最开始遇到的问题: 为什么得分几乎都是一样的值? 先不急, 看看另外两种输出.
4.3.2 所属的叶子节点
当设置pred_leaf=True的时候, 这时就会输出每个样本在所有树中的叶子节点
ypred_leaf = bst.predict(dtest, pred_leaf=True)
ypred_leaf
Out[33]:
array([[1, 1, 1, ..., 1, 1, 1],
[2, 2, 2, ..., 2, 2, 2],
[1, 1, 1, ..., 1, 1, 1],
...,
[1, 1, 1, ..., 1, 1, 1],
[2, 2, 2, ..., 2, 2, 2],
[1, 1, 1, ..., 1, 1, 1]])
输出的维度为[样本数, 树的数量], 树的数量默认是100, 所以ypred_leaf的维度为[100*100].
对于第一行数据的解释就是, 在xgboost所有的100棵树里, 预测的叶子节点都是1(相对于每颗树).
那怎么看每颗树以及相应的叶子节点的分值呢?这里有两种方法, 可视化树或者直接输出模型.
xgb.to_graphviz(bst, num_trees=0)
#可视化第一棵树的生成情况

#直接输出模型的迭代工程
bst.dump_model("model.txt")
booster[0]:
0:[f3<0.75] yes=1,no=2,missing=1
1:leaf=-0.019697
2:leaf=0.0214286
booster[1]:
0:[f2<2.35] yes=1,no=2,missing=1
1:leaf=-0.0212184
2:leaf=0.0212
booster[2]:
0:[f2<2.35] yes=1,no=2,missing=1
1:leaf=-0.0197404
2:leaf=0.0197235
booster[3]: ……
通过上述命令就可以输出模型的迭代过程, 可以看到每颗树都有两个叶子节点(树比较简单). 然后我们对每颗树中的叶子节点1的value进行累加求和, 同时进行相应的函数转换, 就是第一个样本的预测值.
在这里, 以第一个样本为例, 可以看到, 该样本在所有树中都属于第一个叶子, 所以累加值, 得到以下值.
同样, 以第二个样本为例, 可以看到, 该样本在所有树中都属于第二个叶子, 所以累加值, 得到以下值.
leaf1 -1.381214
leaf2 1.410950
在使用xgboost模型最开始, 模型初始化的时候, 我们就设置了'objective': 'binary:logistic', 因此使用函数将累加的值转换为实际的打分:
$$f(x) = 1/(1+exp(-x))$$
1/float(1+np.exp(1.38121416))
Out[24]: 0.20081407112186503
1/float(1+np.exp(-1.410950))
Out[25]: 0.8039157403338895
这就与ypred = bst.predict(dtest) 的分值相对应上了.
4.3.2 特征重要性
接着, 我们看另一种输出方式, 输出的是特征相对于得分的重要性.
ypred_contribs = bst.predict(dtest, pred_contribs=True)
ypred_contribs
Out[37]:
array([[ 0. , 0. , -1.01448286, -0.41277751, 0.04604663],
[ 0. , 0. , 0.96967536, 0.39522746, 0.04604663],
[ 0. , 0. , -1.01448286, -0.41277751, 0.04604663],
[ 0. , 0. , 0.96967536, 0.39522746, 0.04604663],
[ 0. , 0. , 0.96967536, 0.39522746, 0.04604663],
[ 0. , 0. , 0.96967536, 0.39522746, 0.04604663],
[ 0. , 0. , -1.01448286, -0.41277751, 0.04604663],
[ 0. , 0. , 0.96967536, 0.39522746, 0.04604663],
[ 0. , 0. , 0.96967536, 0.39522746, 0.04604663],
[ 0. , 0. , 0.96967536, 0.39522746, 0.04604663],
[ 0. , 0. , 0.96967536, 0.39522746, 0.04604663],
[ 0. , 0. , 0.96967536, 0.39522746, 0.04604663],
[ 0. , 0. , 0.96967536, 0.39522746, 0.04604663],
[ 0. , 0. , -1.01448286, -0.41277751, 0.04604663],
[ 0. , 0. , -1.01448286, -0.41277751, 0.04604663],
[ 0. , 0. , -1.01448286, -0.41277751, 0.04604663],
[ 0. , 0. , -1.01448286, -0.41277751, 0.04604663],
[ 0. , 0. , -1.01448286, -0.41277751, 0.04604663],
[ 0. , 0. , -1.01448286, -0.41277751, 0.04604663],
[ 0. , 0. , -1.01448286, -0.41277751, 0.04604663],
[ 0. , 0. , -1.01448286, -0.41277751, 0.04604663],
[ 0. , 0. , 0.96967536, 0.39522746, 0.04604663],
[ 0. , 0. , -1.01448286, -0.41277751, 0.04604663],
[ 0. , 0. , 0.96967536, 0.39522746, 0.04604663],
[ 0. , 0. , -1.01448286, -0.41277751, 0.04604663]], dtype=float32)
输出的ypred_contribs的维度为[100,5], 通过阅读前面的文档注释就可以知道, 最后一列是bias, 前面的四列分别是每个特征对最后打分的影响因子, 可以看出, 前面两个特征是不起作用的.
通过这个输出, 怎么和最后的打分进行关联呢? 原理也是一样的, 还是以前两列为例.
score_a = sum(ypred_contribs[0])
print score_a
# -1.38121373579
score_b = sum(ypred_contribs[1])
print score_b
# 1.41094945744
相同的分值, 相同的处理情况.
到此, 这期关于在python上关于xgboost算法的简单实现, 以及在实现的过程中: 得分的输出、样本对应到树的节点、每个样本中单独特征对得分的影响, 以及上述三者之间的联系, 均已介绍完毕, 知识积累完毕:happy:!
python平台下实现xgboost算法及输出的解释的更多相关文章
- 在Window平台下安装xgboost的Python版本
原文:http://blog.csdn.net/pengyulong/article/details/50515916 原文修改了两个地方才安装成功,第3步可以不用,第2步重新生成所有的就行了. 第4 ...
- Python机器学习笔记:XgBoost算法
前言 1,Xgboost简介 Xgboost是Boosting算法的其中一种,Boosting算法的思想是将许多弱分类器集成在一起,形成一个强分类器.因为Xgboost是一种提升树模型,所以它是将许多 ...
- Java平台调用Python平台已有算法(附源码及解析)
1. 问题描述 Java平台要调用Pyhon平台已有的算法,为了减少耦合度,采用Pyhon平台提供Restful 接口,Java平台负责来调用,采用Http+Json格式交互. 2. 解决方案 2.1 ...
- (转载)Linux平台下安装 python 模块包
https://blog.csdn.net/aiwangtingyun/article/details/79121145 一.安装Python Windows平台下: 进入Python官网下载页面下载 ...
- caffe学习(1):多平台下安装配置caffe
如何在 centos 7.3 上安装 caffe 深度学习工具 有好多朋友在安装 caffe 时遇到不少问题.(看文章的朋友希望关心一下我的创业项目趣智思成) 今天测试并整理一下安装过程.我是在阿 ...
- .NET平台下开源框架
一.AOP框架Encase 是C#编写开发的为.NET平台提供的AOP框架.Encase 独特的提供了把方面(aspects)部署到运行时代码,而其它AOP框架依赖配置文件的方式.这种部署方面(asp ...
- Python之路,Day21 - 常用算法学习
Python之路,Day21 - 常用算法学习 本节内容 算法定义 时间复杂度 空间复杂度 常用算法实例 1.算法定义 算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的 ...
- 在windows64位Anaconda3环境下安装XGBoost
安装步骤参考的是: "Installing XGBoost For Anaconda on Windows":https://www.ibm.com/developerworks/ ...
- 机器学习总结(一) Adaboost,GBDT和XGboost算法
一: 提升方法概述 提升方法是一种常用的统计学习方法,其实就是将多个弱学习器提升(boost)为一个强学习器的算法.其工作机制是通过一个弱学习算法,从初始训练集中训练出一个弱学习器,再根据弱学习器的表 ...
随机推荐
- 关于阻止百度滥用cookies的想法
Chrome浏览器支持禁止指定的cookies,因此可以作为阻止百度滥用cookies的突破口,最好的方案应该是制作chrome插件(国内厂商的浏览器基本都是基于谷歌开源的 Chromium计划,基本 ...
- 数据库多行数据合并一行(sqlserver、Oracle、Mysql)
我们日常查询数据时,经常会有将查询到的数据按照某一列分组显示(合并多行数据),比如: 表结构: ),coursename )); 需要将以上数据按照用户名分组,所选课程列不同项之间用逗号隔开,在一行中 ...
- swiper轮播,添加鼠标移入事件停止轮播,移出重新开启轮播
已测过无问题.
- java识别死亡或者存活的对象
那些内存需要回收 内存回收是对运行时内存区域的内存回收,其中程序计数器.虚拟机栈.本地方法栈3个区域随线程而生,随线程而灭:栈中的栈帧随着方法的进入和退出而有条不紊的执行着出栈和入栈操作.每一个栈帧中 ...
- 明解C语言 入门篇 第六章答案
练习6-1 /* 求两个整数中的最小值 */ #include <stdio.h> /*--- 返回三个整数中的最小值 ---*/ int min2(int a, int b) { int ...
- DirectX:Vector
Tag DirectX下的博客主要用于记录DirectX的学习过程,主要参考<DirectX 12 3D 游戏实战开发>. Vector in DirectX Shader的编写离不开数学 ...
- Java8 LocalDateTime和Date相互转换
很想要用Java的时间api,但有时候还是需要转换为Date. 二者的相互转换并不是一步到位那么简单,所以,还是需要记录一下转换的api Date to LocalDateTime Date toda ...
- 如何在 ubuntu 下使用 Windows 里面的字体
01. 02. 03. 04. 谢谢浏览!
- golang学习笔记----并发
并发模型 并发目前来看比较主流的就三种: 多线程:每个线程一次处理一个请求,线程越多可并发处理的请求数就越多,但是在高并发下,多线程开销会比较大. 协程:无需抢占式的调度,开销小,可以有效的提高线程的 ...
- 【ELK】elasticsearch使用bulk 导入批量的数据集文件报错:Validation Failed: 1: no requests added
执行命令如下: curl -XPOST http://192.168.6.16:9200/my_new_index/user/_bulk?pretty --data-binary @/cjf/es/e ...