python平台下实现xgboost算法及输出的解释

1. 问题描述

​ 近来, 在python环境下使用xgboost算法作若干的机器学习任务, 在这个过程中也使用了其内置的函数来可视化树的结果, 但对leaf value的值一知半解; 同时, 也遇到过使用xgboost 内置的predict 对测试集进行打分预测, 发现若干样本集的输出分值是一样的. 这个问题该怎么解释呢? 通过翻阅Stack Overflow 上的相关问题, 以及搜索到的github上的issue回答, 应该算初步对这个问题有了一定的理解, 特来分享!

2. 数据集

​ 在这里, 使用经典的鸢尾花的数据来说明. 使用二分类的问题来说明, 故在这里只取前100行的数据.

from sklearn import datasets

iris = datasets.load_iris()
data = iris.data[:100]
print data.shape
#(100L, 4L)
#一共有100个样本数据, 维度为4维 label = iris.target[:100]
print label
#正好选取label为0和1的数据
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]

3. 训练集与测试集

from sklearn.cross_validation import train_test_split

train_x, test_x, train_y, test_y = train_test_split(data, label, random_state=0)

4. Xgboost建模

4.1 模型初始化设置

import xgboost as xgb
dtrain=xgb.DMatrix(train_x,label=train_y)
dtest=xgb.DMatrix(test_x) params={'booster':'gbtree',
'objective': 'binary:logistic',
'eval_metric': 'auc',
'max_depth':4,
'lambda':10,
'subsample':0.75,
'colsample_bytree':0.75,
'min_child_weight':2,
'eta': 0.025,
'seed':0,
'nthread':8,
'silent':1} watchlist = [(dtrain,'train')]

4.2 建模与预测

bst=xgb.train(params,dtrain,num_boost_round=100,evals=watchlist)

ypred=bst.predict(dtest)

# 设置阈值, 输出一些评价指标
y_pred = (ypred >= 0.5)*1 from sklearn import metrics
print 'AUC: %.4f' % metrics.roc_auc_score(test_y,ypred)
print 'ACC: %.4f' % metrics.accuracy_score(test_y,y_pred)
print 'Recall: %.4f' % metrics.recall_score(test_y,y_pred)
print 'F1-score: %.4f' %metrics.f1_score(test_y,y_pred)
print 'Precesion: %.4f' %metrics.precision_score(test_y,y_pred)
metrics.confusion_matrix(test_y,y_pred)

Out[23]:

AUC: 1.0000
ACC: 1.0000
Recall: 1.0000
F1-score: 1.0000
Precesion: 1.0000
array([[13, 0],
[ 0, 12]], dtype=int64)

Yeah, 完美的模型, 完美的预测!

4.3 可视化输出

#对于预测的输出有三种方式
?bst.predict
Signature: bst.predict(data, output_margin=False, ntree_limit=0, pred_leaf=False, pred_contribs=False, approx_contribs=False) pred_leaf : bool
When this option is on, the output will be a matrix of (nsample, ntrees)
with each record indicating the predicted leaf index of each sample in each tree.
Note that the leaf index of a tree is unique per tree, so you may find leaf 1
in both tree 1 and tree 0. pred_contribs : bool
When this option is on, the output will be a matrix of (nsample, nfeats+1)
with each record indicating the feature contributions (SHAP values) for that
prediction. The sum of all feature contributions is equal to the prediction.
Note that the bias is added as the final column, on top of the regular features.

4.3.1 得分

默认的输出就是得分, 这没什么好说的, 直接上code.

ypred = bst.predict(dtest)
ypred

Out[32]:

array([ 0.20081411,  0.80391562,  0.20081411,  0.80391562,  0.80391562,
0.80391562, 0.20081411, 0.80391562, 0.80391562, 0.80391562,
0.80391562, 0.80391562, 0.80391562, 0.20081411, 0.20081411,
0.20081411, 0.20081411, 0.20081411, 0.20081411, 0.20081411,
0.20081411, 0.80391562, 0.20081411, 0.80391562, 0.20081411], dtype=float32)

在这里, 就可以观察到文章最开始遇到的问题: 为什么得分几乎都是一样的值? 先不急, 看看另外两种输出.

4.3.2 所属的叶子节点

当设置pred_leaf=True的时候, 这时就会输出每个样本在所有树中的叶子节点

ypred_leaf = bst.predict(dtest, pred_leaf=True)
ypred_leaf

Out[33]:

array([[1, 1, 1, ..., 1, 1, 1],
[2, 2, 2, ..., 2, 2, 2],
[1, 1, 1, ..., 1, 1, 1],
...,
[1, 1, 1, ..., 1, 1, 1],
[2, 2, 2, ..., 2, 2, 2],
[1, 1, 1, ..., 1, 1, 1]])

输出的维度为[样本数, 树的数量], 树的数量默认是100, 所以ypred_leaf的维度为[100*100].

对于第一行数据的解释就是, 在xgboost所有的100棵树里, 预测的叶子节点都是1(相对于每颗树).

那怎么看每颗树以及相应的叶子节点的分值呢?这里有两种方法, 可视化树或者直接输出模型.

xgb.to_graphviz(bst, num_trees=0)
#可视化第一棵树的生成情况

#直接输出模型的迭代工程
bst.dump_model("model.txt")
booster[0]:
0:[f3<0.75] yes=1,no=2,missing=1
1:leaf=-0.019697
2:leaf=0.0214286
booster[1]:
0:[f2<2.35] yes=1,no=2,missing=1
1:leaf=-0.0212184
2:leaf=0.0212
booster[2]:
0:[f2<2.35] yes=1,no=2,missing=1
1:leaf=-0.0197404
2:leaf=0.0197235
booster[3]: ……

通过上述命令就可以输出模型的迭代过程, 可以看到每颗树都有两个叶子节点(树比较简单). 然后我们对每颗树中的叶子节点1的value进行累加求和, 同时进行相应的函数转换, 就是第一个样本的预测值.

在这里, 以第一个样本为例, 可以看到, 该样本在所有树中都属于第一个叶子, 所以累加值, 得到以下值.

同样, 以第二个样本为例, 可以看到, 该样本在所有树中都属于第二个叶子, 所以累加值, 得到以下值.

leaf1   -1.381214
leaf2 1.410950

在使用xgboost模型最开始, 模型初始化的时候, 我们就设置了'objective': 'binary:logistic', 因此使用函数将累加的值转换为实际的打分:

$$f(x) = 1/(1+exp(-x))$$

1/float(1+np.exp(1.38121416))
Out[24]: 0.20081407112186503
1/float(1+np.exp(-1.410950))
Out[25]: 0.8039157403338895

这就与ypred = bst.predict(dtest) 的分值相对应上了.

4.3.2 特征重要性

接着, 我们看另一种输出方式, 输出的是特征相对于得分的重要性.

ypred_contribs = bst.predict(dtest, pred_contribs=True)
ypred_contribs

Out[37]:

array([[ 0.        ,  0.        , -1.01448286, -0.41277751,  0.04604663],
[ 0. , 0. , 0.96967536, 0.39522746, 0.04604663],
[ 0. , 0. , -1.01448286, -0.41277751, 0.04604663],
[ 0. , 0. , 0.96967536, 0.39522746, 0.04604663],
[ 0. , 0. , 0.96967536, 0.39522746, 0.04604663],
[ 0. , 0. , 0.96967536, 0.39522746, 0.04604663],
[ 0. , 0. , -1.01448286, -0.41277751, 0.04604663],
[ 0. , 0. , 0.96967536, 0.39522746, 0.04604663],
[ 0. , 0. , 0.96967536, 0.39522746, 0.04604663],
[ 0. , 0. , 0.96967536, 0.39522746, 0.04604663],
[ 0. , 0. , 0.96967536, 0.39522746, 0.04604663],
[ 0. , 0. , 0.96967536, 0.39522746, 0.04604663],
[ 0. , 0. , 0.96967536, 0.39522746, 0.04604663],
[ 0. , 0. , -1.01448286, -0.41277751, 0.04604663],
[ 0. , 0. , -1.01448286, -0.41277751, 0.04604663],
[ 0. , 0. , -1.01448286, -0.41277751, 0.04604663],
[ 0. , 0. , -1.01448286, -0.41277751, 0.04604663],
[ 0. , 0. , -1.01448286, -0.41277751, 0.04604663],
[ 0. , 0. , -1.01448286, -0.41277751, 0.04604663],
[ 0. , 0. , -1.01448286, -0.41277751, 0.04604663],
[ 0. , 0. , -1.01448286, -0.41277751, 0.04604663],
[ 0. , 0. , 0.96967536, 0.39522746, 0.04604663],
[ 0. , 0. , -1.01448286, -0.41277751, 0.04604663],
[ 0. , 0. , 0.96967536, 0.39522746, 0.04604663],
[ 0. , 0. , -1.01448286, -0.41277751, 0.04604663]], dtype=float32)

输出的ypred_contribs的维度为[100,5], 通过阅读前面的文档注释就可以知道, 最后一列是bias, 前面的四列分别是每个特征对最后打分的影响因子, 可以看出, 前面两个特征是不起作用的.

通过这个输出, 怎么和最后的打分进行关联呢? 原理也是一样的, 还是以前两列为例.

score_a = sum(ypred_contribs[0])
print score_a
# -1.38121373579
score_b = sum(ypred_contribs[1])
print score_b
# 1.41094945744

相同的分值, 相同的处理情况.

到此, 这期关于在python上关于xgboost算法的简单实现, 以及在实现的过程中: 得分的输出、样本对应到树的节点、每个样本中单独特征对得分的影响, 以及上述三者之间的联系, 均已介绍完毕, 知识积累完毕:happy:!

python平台下实现xgboost算法及输出的解释的更多相关文章

  1. 在Window平台下安装xgboost的Python版本

    原文:http://blog.csdn.net/pengyulong/article/details/50515916 原文修改了两个地方才安装成功,第3步可以不用,第2步重新生成所有的就行了. 第4 ...

  2. Python机器学习笔记:XgBoost算法

    前言 1,Xgboost简介 Xgboost是Boosting算法的其中一种,Boosting算法的思想是将许多弱分类器集成在一起,形成一个强分类器.因为Xgboost是一种提升树模型,所以它是将许多 ...

  3. Java平台调用Python平台已有算法(附源码及解析)

    1. 问题描述 Java平台要调用Pyhon平台已有的算法,为了减少耦合度,采用Pyhon平台提供Restful 接口,Java平台负责来调用,采用Http+Json格式交互. 2. 解决方案 2.1 ...

  4. (转载)Linux平台下安装 python 模块包

    https://blog.csdn.net/aiwangtingyun/article/details/79121145 一.安装Python Windows平台下: 进入Python官网下载页面下载 ...

  5. caffe学习(1):多平台下安装配置caffe

    如何在 centos 7.3 上安装 caffe 深度学习工具   有好多朋友在安装 caffe 时遇到不少问题.(看文章的朋友希望关心一下我的创业项目趣智思成) 今天测试并整理一下安装过程.我是在阿 ...

  6. .NET平台下开源框架

    一.AOP框架Encase 是C#编写开发的为.NET平台提供的AOP框架.Encase 独特的提供了把方面(aspects)部署到运行时代码,而其它AOP框架依赖配置文件的方式.这种部署方面(asp ...

  7. Python之路,Day21 - 常用算法学习

    Python之路,Day21 - 常用算法学习   本节内容 算法定义 时间复杂度 空间复杂度 常用算法实例 1.算法定义 算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的 ...

  8. 在windows64位Anaconda3环境下安装XGBoost

    安装步骤参考的是: "Installing XGBoost For Anaconda on Windows":https://www.ibm.com/developerworks/ ...

  9. 机器学习总结(一) Adaboost,GBDT和XGboost算法

    一: 提升方法概述 提升方法是一种常用的统计学习方法,其实就是将多个弱学习器提升(boost)为一个强学习器的算法.其工作机制是通过一个弱学习算法,从初始训练集中训练出一个弱学习器,再根据弱学习器的表 ...

随机推荐

  1. 洛谷 P1919 A*B Problem升级版

    妈妈我终于会\(A*B\ problem\)啦~~ 题目大意: 给你两个正整数 \(a,b\),求\(a*b\) 其中\(a,b\le 10^{1000000}\) 我们只要把多项式\(A(x)=\s ...

  2. CF1188C Array Beauty(DP)

    日常降智. 不过还是第一次和 2700 的题正解这么近呢-- 由于排序后不影响答案,而且直觉告诉我们排序后会更好做,不妨排个序. 直觉告诉我们,变成求最小差 \(\ge v\) 的方案数会比最小差 \ ...

  3. [LeetCode] 633. Sum of Square Numbers 平方数之和

    Given a non-negative integer c, your task is to decide whether there're two integers a and b such th ...

  4. PKUWC2020游记

    PKUWC2020在2019年举行是真的沙雕 晚个两星期我就能逃掉期末考了 Day \(-\infty\) 开始停课训练,和ntf.lzy一起. atcoder真好玩,只可惜我没脑子-- kenkoo ...

  5. idea插件篇之java内存分析工具(JProfiler)

    前言在运行java的时候有时候想测试云运行时占用内存情况,这时候就需要使用测试工具查看了.在eclipse里面有 Eclipse Memory Analyzer tool(MAT)插件可以测试,而在i ...

  6. okhttp 发送get post 请求

    package com.qlwb.business.util; import java.util.Map; import com.alibaba.fastjson.JSON; import okhtt ...

  7. 小i机器人

    //机器人回复 function xiaoirobot($openid, $content) { //定义app $app_key = ""; $app_secret = &quo ...

  8. Docker 镜像/容器操作命令

    一.镜像操作   1.拉取镜像 # docker pull tomcat # docker pull tomcat:8.0.21-jre8 # docker pull 192.168.220.150: ...

  9. Hash冲突的解决--暴雪的Hash算法

    Hash冲突的解决--暴雪的Hash算法https://usench.iteye.com/blog/2199399https://www.bbsmax.com/A/kPzOO7a8zx/

  10. POJ 1146 ID Codes 用字典序思想生成下一个排列组合

    ID Codes Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7644   Accepted: 4509 Descript ...